Graphing ACTIVITY Use after Lesson 7.5

7.5 Graph Logarithmic Functions

текз а.5, а.6, 2А.11.В

QUESTION How can you graph logarithmic functions on a graphing calculator?

You can use a graphing calculator to graph logarithmic functions simply by using the LOG or LN key. To graph a logarithmic function having a base other than 10 or *e*, you need to use the change-of-base formula to rewrite the function in terms of common or natural logarithms.

EXAMPLE Graph logarithmic functions

Use a graphing calculator to graph $y = \log_2 x$ and $y = \log_2 (x - 3) + 1$.

STEP 1 *Rewrite functions* Use the change-of-base formula to rewrite each function in terms of common logarithms.

 $y = \log_2 x$ $y = \log_2 (x - 3) + 1$ $= \frac{\log x}{\log 2}$ $= \frac{\log (x - 3)}{\log 2} + 1$

STEP 2 Enter functions Enter each function into a graphing calculator. **STEP 3 Graph functions** Graph the functions.

Y1=log(X)/l	og(2)
$Y_2 = (log(X-3)$	>/
log(2))+1	
Y3=	
Y 4 =	
Y 5 =	
Y6=	

PRACTICE

Use a graphing calculator to graph the function.

1. $y = \log_4 x$	2. $y = \log_8 x$	3. $f(x) = \log_3 x$
4. $y = \log_5 x$	5. $y = \log_{12} x$	6. $g(x) = \log_9 x$
7. $y = \log_3 (x + 2)$	8. $y = \log_5 x - 1$	9. $f(x) = \log_4 (x - 5) - 2$
10. $y = \log_2(x+4) - 7$	11. $y = \log_7 (x - 5) + 3$	12. $g(x) = \log_3 (x + 6) - 6$

13. REASONING Graph $y = \ln x$. If your calculator did not have a natural logarithm key, explain how you could graph $y = \ln x$ using the **Log** key.