EXAMPLE 4 Use the change-of-base formula

Evaluate $\log_3 8$ using common logarithms and natural logarithms.

Solution

Using common logarithms: $\log_3 8 = \frac{\log 8}{\log 3} \approx \frac{0.9031}{0.4771} \approx 1.893$

Using natural logarithms: $\log_3 8 = \frac{\ln 8}{\ln 3} \approx \frac{2.0794}{1.0986} \approx 1.893$

EXAMPLE 5 Use properties of logarithms in real life

SOUND INTENSITY For a sound with intensity *I* (in watts per square meter), the loudness L(I) of the sound (in decibels) is given by the function

$$L(I) = 10 \log \frac{I}{I_0}$$

where I_0 is the intensity of a barely audible sound (about 10^{-12} watts per square meter). An artist in a recording studio turns up the volume of a track so that the sound's intensity doubles. By how many decibels does the loudness increase?

Solution

Let *I* be the original intensity, so that 2*I* is the doubled intensity.

Increase in loudness = L(2I) - L(I)

$$= 10 \log \frac{2I}{I_0} - 10 \log \frac{I}{I_0}$$
$$= 10 \left(\log \frac{2I}{I_0} - \log \frac{I}{I_0} \right)$$
$$= 10 \left(\log 2 + \log \frac{I}{I_0} - \log \frac{I}{I_0} \right)$$
$$= 10 \log 2$$
$$\approx 3.01$$

Write an expression.
Substitute.
Distributive property
Product property
Simplify.
Use a calculator.

▶ The loudness increases by about 3 decibels.

\checkmark

GUIDED PRACTICE for Examples 4 and 5

Use the change-of-base formula to evaluate the logarithm. 7. log₅ 8 8. log₈ 14 9. log₂₆ 9 10. log₁₂ 30

11. **WHAT IF?** In Example 5, suppose the artist turns up the volume so that the sound's intensity triples. By how many decibels does the loudness increase?

