EXAMPLE 4 Use the change-of-base formula

Evaluate $\log _{3} 8$ using common logarithms and natural logarithms.

Solution

Using common logarithms: $\log _{3} 8=\frac{\log 8}{\log 3} \approx \frac{0.9031}{0.4771} \approx 1.893$
Using natural logarithms: $\log _{3} 8=\frac{\ln 8}{\ln 3} \approx \frac{2.0794}{1.0986} \approx 1.893$

EXAMPLE 5 Use properties of logarithms in real life

SOUND INTENSITY For a sound with intensity I (in watts per square meter), the loudness $L(I)$ of the sound (in decibels) is given by the function

$$
L(I)=10 \log \frac{I}{I_{0}}
$$

where I_{0} is the intensity of a barely audible sound (about 10^{-12} watts per square meter). An artist in a recording studio turns up the volume of a track so that the sound's intensity doubles. By how many decibels does the loudness increase?

Solution

Let I be the original intensity, so that $2 I$ is the doubled intensity.

$$
\begin{aligned}
\text { Increase in loudness } & =L(2 I)-L(I) & & \text { Write an expression. } \\
& =10 \log \frac{2 I}{I_{0}}-10 \log \frac{I}{I_{0}} & & \text { Substitute. } \\
& =10\left(\log \frac{2 I}{I_{0}}-\log \frac{I}{I_{0}}\right) & & \text { Distributive property } \\
& =10\left(\log 2+\log \frac{I}{I_{0}}-\log \frac{I}{I_{0}}\right) & & \text { Product property } \\
& =10 \log 2 & & \text { Simplify. } \\
& \approx 3.01 & & \text { Use a calculator. }
\end{aligned}
$$

- The loudness increases by about 3 decibels.

Use the change-of-base formula to evaluate the logarithm.
7. $\log _{5} 8$
8. $\log _{8} 14$
9. $\log _{26} 9$
10. $\log _{12} 30$
11. WHAT IF? In Example 5, suppose the artist turns up the volume so that the sound's intensity triples. By how many decibels does the loudness increase?

