Apply Properties of Logarithms

Before

You evaluated logarithms.

Now

You will rewrite logarithmic expressions.

Why?

So you can model the loudness of sounds, as in Ex. 63.

Key Vocabulary

• base, p. 10

KEY CONCEPT

For Your Notebook

Properties of Logarithms

Let b, m, and n be positive numbers such that $b \neq 1$.

Product Property

 $\log_h mn = \log_h m + \log_h n$

Quotient Property

 $\log_h \frac{m}{n} = \log_h m - \log_h n$

Power Property

 $\log_h m^n = n \log_h m$

EXAMPLE 1 Use properties of logarithms

Use $\log_4 3 \approx 0.792$ and $\log_4 7 \approx 1.404$ to evaluate the logarithm.

AVOID ERRORS

Note that in general

$$\log_b \frac{m}{n} \neq \frac{\log_b m}{\log_b n} \text{ and }$$

 $\log_h mn \neq (\log_h m)(\log_h n).$

a.
$$\log_4 \frac{3}{7} = \log_4 3 - \log_4 7$$
 Quotient property

$$\approx 0.792 - 1.404$$

Use the given values of $\log_4 3$ and $\log_4 7$.

$$= -0.612$$

Simplify.

b.
$$\log_4 21 = \log_4 (3 \cdot 7)$$

Write 21 as 3 ⋅ 7.

$$= \log_4 3 + \log_4 7$$

Product property

$$\approx 0.792 + 1.404$$

Use the given values of $\log_4 3$ and $\log_4 7$.

$$= 2.196$$

Simplify.

c.
$$\log_4 49 = \log_4 7^2$$

Write 49 as 7^2 .

$$= 2 \log_4 7$$

Power property

$$\approx 2(1.404)$$

Use the given value of log, 7.

$$= 2.808$$

Simplify.

GUIDED PRACTICE for Example 1

Use $\log_6 5 \approx 0.898$ and $\log_6 8 \approx 1.161$ to evaluate the logarithm.

1.
$$\log_{6} \frac{5}{9}$$