
TRANSLATIONS You can graph a logarithmic function of the form $y = \log_b (x - h) + k$ by translating the graph of the parent function $y = \log_h x$.

EXAMPLE 8 **Translate a logarithmic graph**

Graph $y = \log_2 (x + 3) + 1$. State the domain and range.

Solution

- STEP 1 **Sketch** the graph of the parent function $y = \log_2 x$, which passes through (1, 0), (2, 1), and (4, 2).
- **Translate** the parent graph left 3 units and up 1 unit. The translated graph passes through (-2, 1), (-1, 2), and (1, 3). The graph's asymptote is x = -3. The domain is x > -3, and the range is all real numbers.

GUIDED PRACTICE

for Examples 7 and 8

Graph the function. State the domain and range.

16.
$$y = \log_5 x$$

17.
$$y = \log_{1/3}(x - 3)$$

18.
$$f(x) = \log_4 (x+1) - 2$$

7.4 EXERCISES

HOMEWORK

= WORKED-OUT SOLUTIONS on p. WS1 for Exs. 13, 33, and 61

= TAKS PRACTICE AND REASONING Exs. 36, 61, 62, 64, and 65

SKILL PRACTICE

- 1. **VOCABULARY** Copy and complete: A logarithm with base 10 is called a(n) _?_ logarithm.
- **2. WAYRITING** Describe the relationship between $y = 5^x$ and $y = \log_5 x$.

EXAMPLE 1

on p. 499 for Exs. 3-7

EXPONENTIAL FORM Rewrite the equation in exponential form.

3.
$$\log_4 16 = 2$$

4.
$$\log_7 343 = 3$$

5.
$$\log_6 \frac{1}{36} = -2$$
 6. $\log_{64} 1 = 0$

6.
$$\log_{64} 1 = 0$$

7. ERROR ANALYSIS Describe and correct the error in rewriting the equation $2^{-3} = \frac{1}{8}$ in logarithmic form.

$$\log_2 -3 = \frac{1}{8}$$

EXAMPLE 2

on p. 500 for Exs. 8-19

EVALUATING LOGARITHMS Evaluate the logarithm without using a calculator.

10.
$$\log_6 216$$

11.
$$\log_2 64$$

$$\log_{1/2} 8$$

14.
$$\log_3 \frac{1}{27}$$

15.
$$\log_{16} \frac{1}{4}$$

16.
$$\log_{1/4} 16$$