GRAPHING LOGARITHMIC FUNCTIONS You can use the inverse relationship between exponential and logarithmic functions to graph logarithmic functions.

Parent Graphs for Logarithmic Functions

The graph of $f(x) = \log_b x$ is shown below for b > 1 and for 0 < b < 1. Because $f(x) = \log_b x$ and $g(x) = b^x$ are inverse functions, the graph of $f(x) = \log_b x$ is the reflection of the graph of $g(x) = b^x$ in the line y = x.

EXAMPLE 7 Graph logarithmic functions

Graph the function.

KEY CONCEPT

a. $y = \log_3 x$

Solution

a. Plot several convenient points, such as (1, 0), (3, 1), and (9, 2). The *y*-axis is a vertical asymptote.

From *left* to *right*, draw a curve that starts just to the right of the *y*-axis and moves up through the plotted points, as shown below.

- **b.** $y = \log_{1/2} x$
- **b.** Plot several convenient points, such as (1, 0), (2, -1), (4, -2), and (8, -3). The *y*-axis is a vertical asymptote.

For Your Notebook

From *left* to *right*, draw a curve that starts just to the right of the *y*-axis and moves down through the plotted points, as shown below.

