## EXAMPLE 2 Evaluate logarithms

Evaluate the logarithm.

**a.**  $\log_4 64$  **b.**  $\log_5 0.2$  **c.**  $\log_{1/5} 125$  **d.**  $\log_{36} 6$ 

## **Solution**

To help you find the value of  $\log_b y$ , ask yourself what power of *b* gives you *y*.

| <b>a.</b> 4 to what power gives 64?              | $4^3 = 64$ , so $\log_4 64 = 3$ .                                  |
|--------------------------------------------------|--------------------------------------------------------------------|
| <b>b.</b> 5 to what power gives 0.2?             | $5^{-1} = 0.2$ , so $\log_5 0.2 = -1$ .                            |
| <b>c.</b> $\frac{1}{5}$ to what power gives 125? | $\left(\frac{1}{5}\right)^{-3} = 125$ , so $\log_{1/5} 125 = -3$ . |
| <b>d.</b> 36 to what power gives 6?              | $36^{1/2} = 6$ , so $\log_{36} 6 = \frac{1}{2}$ .                  |

**SPECIAL LOGARITHMS** A **common logarithm** is a logarithm with base 10. It is denoted by  $\log_{10}$  or simply by log. A **second second se** 

| Common Logarithm       | Natural Logarithm  |  |
|------------------------|--------------------|--|
| $\log_{10} x = \log x$ | $\log_e x = \ln x$ |  |

Most calculators have keys for evaluating common and natural logarithms.

| C | EXAMPLE 3        | Evaluate common and natural logarithms |              |                            |  |  |
|---|------------------|----------------------------------------|--------------|----------------------------|--|--|
|   | Expression       | Keystrokes                             | Display      | Check                      |  |  |
|   | <b>a.</b> log 8  | LOG 8 ) ENTER                          | 0.903089987  | $10^{0.903} \approx 8$ 🗸   |  |  |
|   | <b>b.</b> ln 0.3 | ln .3 ) enter                          | -1.203972804 | $e^{-1.204} \approx 0.3$ 🗸 |  |  |



The wind speed near the tornado's center was about 283 miles per hour.