EXAMPLE 2 Evaluate logarithms

Evaluate the logarithm.
a. $\log _{4} 64$
b. $\log _{5} 0.2$
c. $\log _{1 / 5} 125$
d. $\log _{36} 6$

Solution

To help you find the value of $\log _{b} y$, ask yourself what power of b gives you y.
a. 4 to what power gives 64 ?
b. 5 to what power gives 0.2 ?
c. $\frac{1}{5}$ to what power gives 125 ?
d. 36 to what power gives 6 ?
$4^{3}=64$, so $\log _{4} 64=3$.
$5^{-1}=0.2$, so $\log _{5} 0.2=-1$.
$\left(\frac{1}{5}\right)^{-3}=125$, so $\log _{1 / 5} 125=-3$.
$36^{1 / 2}=6$, so $\log _{36} 6=\frac{1}{2}$.

SPECIAL LOGARITHMS A common logarithm is a logarithm with base 10. It is denoted by $\log _{10}$ or simply by log. A is a logarithm with base e. It can be denoted by $\log _{e}$, but is more often denoted by \ln.

Common Logarithm

$$
\log _{10} x=\log x
$$

Natural Logarithm

$$
\log _{e} x=\ln x
$$

Most calculators have keys for evaluating common and natural logarithms.

EXAMPLE 3 Evaluate common and natural logarithms

Expression	Keystrokes	Display	Check
a. $\log 8$	LOG $8 \square$ D ENTER	0.903089987	$10^{0.903} \approx 8 \checkmark$
b. $\ln 0.3$	LN $.3 \square$	ENTER	-1.203972804

EXAMPLE 4 Evaluate a logarithmic model

TORNADOES The wind speed s (in miles per hour) near the center of a tornado can be modeled by

$$
s=93 \log d+65
$$

where d is the distance (in miles) that the tornado travels. In 1925, a tornado traveled 220 miles through three states. Estimate the wind speed near the tornado's center.

Solution

$$
\begin{aligned}
s & =93 \log d+65 & & \text { Write function. } \\
& =93 \log 220+65 & & \text { Substitute } 220 \text { for } d . \\
& \approx 93(2.342)+65 & & \text { Use a calculator. } \\
& =282.806 & & \text { Simplify. }
\end{aligned}
$$

- The wind speed near the tornado's center was about 283 miles per hour.

