7.4 Evaluate Logarithms and Graph Logarithmic Functions

2A.11.B. 2A.11.C

You evaluated and graphed exponential functions. You will evaluate logarithms and graph logarithmic functions. So you can model the wind speed of a tornado, as in Example 4.

Key Vocabulary

• logarithm of y with base b

- common logarithm
- natural logarithm

You know that $2^2 = 4$ and $2^3 = 8$. However, for what value of x does $2^x = 6$? Mathematicians define this x-value using a *logarithm* and write $x = \log_2 6$. The definition of a logarithm can be generalized as follows.

KEY CONCEPT

For Your Notebook

Definition of Logarithm with Base b

Let *b* and *y* be positive numbers with $b \neq 1$. The **logarithm of** *y* **with base** *b* is denoted by $\log_b y$ and is defined as follows:

 $\log_h y = x$ if and only if $b^x = y$

The expression $\log_b y$ is read as "log base b of y."

This definition tells you that the equations $\log_b y = x$ and $b^x = y$ are equivalent. The first is in *logarithmic form* and the second is in *exponential form*.

EXAMPLE 1 Rewrite logarithmic equations

Logarithmic Form	Exponential Form
a. $\log_2 8 = 3$	$2^3 = 8$
b. $\log_4 1 = 0$	$4^0 = 1$
c. $\log_{12} 12 = 1$	$12^1 = 12$
d. $\log_{1/4} 4 = -1$	$\left(\frac{1}{4}\right)^{-1} = 4$

Parts (b) and (c) of Example 1 illustrate two special logarithm values that you should learn to recognize. Let *b* be a positive real number such that $b \neq 1$.

Logarithm of 1	Logarithm of <i>b</i> with Base <i>b</i>
$\log_b 1 = 0$ because $b^0 = 1$.	$\log_b b = 1$ because $b^1 = b$.

\checkmark

GUIDED PRACTICE for Example 1

Rewrite the equation in exponential form.

1. $\log_3 81 = 4$ **2.** $\log_7 7 = 1$

3. $\log_{14} 1 = 0$ **4.** $\log_{1/2} 32 = -5$