73 Use Functions Involving e
 2A.11.C, 2A.11.F

Before You studied exponential growth and decay functions.
Now
Why? You will study functions involving the natural base e. So you can model visibility underwater, as in Ex. 59.

Key Vocabulary - natural base e

The history of mathematics is marked by the discovery of special numbers such as π and i. Another special number is denoted by the letter e. The number is called the natural base \boldsymbol{e} or the Euler number after its discoverer, Leonhard Euler (1707-1783). The expression $\left(1+\frac{1}{n}\right)^{n}$ approaches e as n increases.

n	10^{1}	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}
$\left(\mathbf{1}+\frac{\mathbf{1}}{\boldsymbol{n}}\right)^{\boldsymbol{n}}$	2.59374	2.70481	2.71692	2.71815	2.71827	2.71828

KEY CONCEPT

For Your Notebook

The Natural Base e

The natural base e is irrational. It is defined as follows:
As n approaches $+\infty,\left(1+\frac{1}{n}\right)^{n}$ approaches $e \approx 2.718281828$.

EXAMPLE 1 Simplify natural base expressions

Simplify the expression.

a. $e^{2} \cdot e^{5}=e^{2+5}$
b. $\frac{12 e^{4}}{3 e^{3}}=4 e^{4-3}$
c. $\left(5 e^{-3 x}\right)^{2}=5^{2}\left(e^{-3 x}\right)^{2}$
$=e^{7}$
$=4 e$

$$
=25 e^{-6 x}=\frac{25}{e^{6 x}}
$$

REVIEW

EXPONENTS
For help with properties of exponents, see p. 330.

EXAMPLE 2 Evaluate natural base expressions

Use a calculator to evaluate the expression.

\quad Expression	Keystrokes	Display
a. e^{4}	2nd $\left.\left[\mathrm{e}^{x}\right] 4 \square\right)$ ENTER	54.59815003
b. $e^{-0.09}$	2nd $\left.\left.\left[\mathrm{e}^{x}\right](-)\right] .09 \square\right)$ ENTER	0.9139311853

