Use Functions Involving e 2A.4.B, 2A.11.B. 2A.11.C. 2A.11.F You studied exponential growth and decay functions. Before Now You will study functions involving the natural base e. Why? So you can model visibility underwater, as in Ex. 59.

Key Vocabulary • natural base e

The history of mathematics is marked by the discovery of special numbers such as π and *i*. Another special number is denoted by the letter *e*. The number is called the **natural base** or the *Euler number* after its discoverer, Leonhard Euler

(1707–1783). The expression $\left(1 + \frac{1}{n}\right)^n$ approaches *e* as *n* increases.

n	10 ¹	10 ²	10 ³	10 ⁴	10 ⁵	10 ⁶
$\left(1+\frac{1}{n}\right)^n$	2.59374	2.70481	2.71692	2.71815	2.71827	2.71828

EXAMPLE 1 Simplify natural base expressions

Simplify the expression.

REVIEW EXPONENTS For of e **p**. 3

PONENTS r help with properties	a. $e^2 \cdot e^5 = e^{2+5}$	b. $\frac{12e^4}{3e^3} = 4e^{4-3}$	c. $(5e^{-3x})^2 = 5^2(e^{-3x})^2$
exponents, see 330.	$= e^{7}$	=4e	$= 25e^{-6x} = \frac{25}{e^{6x}}$

EXAMPLE 2 **Evaluate natural base expressions**

Use a calculator to evaluate the expression.

Expression	Keystrokes	Display
a. e^4		54.59815003
b. $e^{-0.09}$	2nd $[e^x]$ (-) .09) ENTER	0.9139311853