TRANSFORMATIONS Recall from Lesson 7.1 that the graph of a function $y = ab^x$ is a vertical stretch or shrink of the graph of $y = b^x$, and the graph of $y = ab^{x-h} + k$ is a translation of the graph of $y = ab^x$.

EXAMPLE 2 Graph $y = ab^x$ for 0 < b < 1

Graph the function.

a.
$$y = 2\left(\frac{1}{4}\right)^{x}$$

Solution

a. Plot (0, 2) and $\left(1, \frac{1}{2}\right)$. Then, from *right* to *left*, draw a curve that begins just above the *x*-axis, passes through the two points, and moves up to the left.

			2(1	X	
		-y-	2 4		
_(0), 2)		$(\frac{1}{2})^{-}$		
-	1				-> x

b.
$$y = -3\left(\frac{2}{5}\right)^x$$

b. Plot (0, -3) and $\left(1, -\frac{6}{5}\right)$. Then, from *right* to *left*, draw a curve that begins just below the *x*-axis, passes through the two points, and moves down to the left.

		-1	∮ y					
1				1	-			x
			1	(1	_	6		
	(0,	-3)		ί.	-	5/		
		+		y =		-3	(2)	x
_		1.		-	-	-	()	

GUIDED PRACTICEfor Examples 1 and 2Graph the function.1. $y = \left(\frac{2}{3}\right)^x$ 2. $y = -2\left(\frac{3}{4}\right)^x$ 3. $f(x) = 4\left(\frac{1}{5}\right)^x$

EXAMPLE 3 Graph
$$y = ab^{x-h} + k$$
 for $0 < b < 1$

Graph $y = 3\left(\frac{1}{2}\right)^{x+1} - 2$. State the domain and range.

Solution

Begin by sketching the graph of $y = 3\left(\frac{1}{2}\right)^{3}$,

which passes through (0, 3) and $\left(1, \frac{3}{2}\right)$.

Then translate the graph left 1 unit and down 2 units. Notice that the translated

graph passes through (-1, 1) and $\left(0, -\frac{1}{2}\right)$.

The graph's asymptote is the line y = -2. The domain is all real numbers, and the range is y > -2.

CLASSIFY FUNCTIONS

Note that the function in part (b) of Example 2 is not an exponential decay function because a = -3 < 0.

.