TRANSFORMATIONS Recall from Lesson 7.1 that the graph of a function $y=a b^{x}$ is a vertical stretch or shrink of the graph of $y=b^{x}$, and the graph of $y=a b^{x-h}+k$ is a translation of the graph of $y=a b^{x}$.

EXAMPLE 2 Graph $\boldsymbol{y}=\boldsymbol{a} \boldsymbol{b}^{\boldsymbol{x}}$ for $0<\boldsymbol{b}<1$

CLASSIFY

 FUNCTIONSNote that the function in part (b) of Example 2 is not an exponential decay function because $a=-3<0$.

Graph the function.
a. $y=2\left(\frac{1}{4}\right)^{x}$
b. $y=-3\left(\frac{2}{5}\right)^{x}$

Solution

a. Plot $(0,2)$ and $\left(1, \frac{1}{2}\right)$. Then, from
b. Plot $(0,-3)$ and $\left(1,-\frac{6}{5}\right)$. Then, from right to left, draw a curve right to left, draw a curve that begins just above the x-axis, passes through the two points, and moves up to the left.
 that begins just below the x-axis, passes through the two points, and moves down to the left.

\section*{| GUided PrActice | for Examples 1 and 2 |
| :--- | :--- | :--- |}

Graph the function.

1. $y=\left(\frac{2}{3}\right)^{x}$
2. $y=-2\left(\frac{3}{4}\right)^{x}$
3. $f(x)=4\left(\frac{1}{5}\right)^{x}$

EXAMPLE 3 Graph $y=a b^{x-h}+k$ for $0<b<1$

Graph $y=3\left(\frac{1}{2}\right)^{x+1}-2$. State the domain and range.

Solution

Begin by sketching the graph of $y=3\left(\frac{1}{2}\right)^{x}$,
which passes through $(0,3)$ and $\left(1, \frac{3}{2}\right)$.
Then translate the graph left 1 unit and down 2 units. Notice that the translated graph passes through $(-1,1)$ and $\left(0,-\frac{1}{2}\right)$.

The graph's asymptote is the line $y=-2$. The domain is all real numbers, and the range is $y>-2$.

