COMPOUND INTEREST Exponential growth functions are used in real-life situations involving compound interest. Compound interest is interest paid on the initial investment, called the principal, and on previously earned interest. Interest paid only on the principal is called simple interest.

KEY CONCEPT
 For Your Notebook

Compound Interest

Consider an initial principal P deposited in an account that pays interest at an annual rate r (expressed as a decimal), compounded n times per year. The amount A in the account after t years is given by this equation:

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

EXAMPLE 5 Find the balance in an account

FINANCE You deposit $\$ 4000$ in an account that pays 2.92% annual interest. Find the balance after 1 year if the interest is compounded with the given frequency.
a. Quarterly
b. Daily

Solution

a. With interest compounded quarterly, the balance after 1 year is:

$$
\begin{aligned}
A & =P\left(1+\frac{r}{n}\right)^{n t} & & \text { Write compound interest formula. } \\
& =4000\left(1+\frac{0.0292}{4}\right)^{4 \cdot 1} & & P=4000, r=0.0292, n=4, \boldsymbol{t}=1 \\
& =4000(1.0073)^{4} & & \text { Simplify. } \\
& \approx 4118.09 & & \text { Use a calculator. }
\end{aligned}
$$

- The balance at the end of 1 year is $\$ 4118.09$.
b. With interest compounded daily, the balance after 1 year is:

$$
\begin{aligned}
A & =P\left(1+\frac{r}{n}\right)^{n t} & & \text { Write compound interest formula. } \\
& =4000\left(1+\frac{0.0292}{365}\right)^{365 \cdot 1} & & P=4000, r=0.0292, n=365, \boldsymbol{t}=1 \\
& =4000(1.00008)^{365} & & \text { Simplify. } \\
& \approx 4118.52 & & \text { Use a calculator. }
\end{aligned}
$$

- The balance at the end of 1 year is $\$ 4118.52$.

Guided Practice for Example 5

6. FINANCE You deposit $\$ 2000$ in an account that pays 4% annual interest. Find the balance after 3 years if the interest is compounded daily.
