EXPONENTIAL GROWTH MODELS When a real-life quantity increases by a fixed percent each year (or other time period), the amount y of the quantity after t years can be modeled by the equation

$$
y=a(1+r)^{t}
$$

where a is the initial amount and r is the percent increase expressed as a decimal. Note that the quantity $1+r$ is the growth factor.

COMPUTERS In 1996, there were 2573 computer viruses and other computer security incidents. During the next 7 years, the number of incidents increased by about 92% each year.

- Write an exponential growth model giving the number n of incidents t years after 1996. About how many incidents were there in 2003?

- Graph the model.
- Use the graph to estimate the year when there were about 125,000 computer security incidents.

Solution

STEP 1 The initial amount is $a=2573$ and the percent increase is $r=0.92$. So, the exponential growth model is:

$$
\begin{aligned}
n & =\boldsymbol{a}(1+r)^{t} & & \text { Write exponential growth model. } \\
& =2573(1+0.92)^{t} & & \text { Substitute } 2573 \text { for } \boldsymbol{a} \text { and } 0.92 \text { for } r . \\
& =2573(1.92)^{t} & & \text { Simplify. }
\end{aligned}
$$

Notice that the percent increase and the growth factor are two different values. An increase of 92% corresponds to a growth factor of 1.92 .

Using this model, you can estimate the number of incidents in $2003(t=7)$ to be $n=2573(1.92)^{7} \approx 247,485$.

STEP 2 The graph passes through the points $(0,2573)$ and $(1,4940 \cdot 16)$. Plot a few other points. Then draw a smooth curve through the points.

STEP 3 Using the graph, you can estimate that the number of incidents was about 125,000 during $2002(t \approx 6)$.

AnimatedAlgebra
at classzone.com

Guided Practice for Example 4

4. WHAT IF? In Example 4, estimate the year in which there were about 250,000 computer security incidents.
5. In the exponential growth model $y=527(1.39)^{x}$, identify the initial amount, the growth factor, and the percent increase.
