The graph of a function $y=a b^{x}$ is a vertical stretch or shrink of the graph of $y=b^{x}$. The y-intercept of the graph of $y=a b^{x}$ occurs at $(0, a)$ rather than $(0,1)$.

EXAMPLE 2 Graph $y=a b^{x}$ for $b>1$

Graph the function.

a. $y=\frac{1}{2} \cdot 4^{x}$
b. $y=-\left(\frac{5}{2}\right)^{x}$

Solution

a. Plot $\left(0, \frac{1}{2}\right)$ and $(1,2)$. Then, from b. Plot $(0,-1)$ and $\left(1,-\frac{5}{2}\right)$. Then, left to right, draw a curve that begins just above the x-axis, passes through the two points, and moves up to the right.

from left to right, draw a curve that begins just below the x-axis, passes through the two points, and moves down to the right.

TRANSLATIONS To graph a function of the form $y=a b^{x-h}+\boldsymbol{k}$, begin by sketching the graph of $y=a b^{x}$. Then translate the graph horizontally by h units and vertically by \boldsymbol{k} units.

EXAMPLE 3 Graph $y=a b^{x-h}+k$ for $b>1$

Graph $y=4 \cdot 2^{x-1}-3$. State the domain and range.

Solution

Begin by sketching the graph of $y=4 \cdot 2^{x}$, which passes through $(0,4)$ and $(1,8)$. Then translate the graph right 1 unit and down 3 units to obtain the graph of $y=4 \cdot 2^{x-1}-3$.

The graph's asymptote is the line $y=-3$. The domain is all real numbers, and the range is $y>-3$.

GUIDED PrActice for Examples 1, 2, and 3

Graph the function. State the domain and range.

1. $y=4^{x}$
2. $y=\frac{1}{2} \cdot 3^{x}$
3. $f(x)=3^{x+1}+2$
