The graph of a function $y = ab^x$ is a vertical stretch or shrink of the graph of $y = b^x$. The *y*-intercept of the graph of $y = ab^x$ occurs at (0, a) rather than (0, 1).

EXAMPLE 2

Graph $y = ab^x$ for b > 1

Graph the function.

a.
$$y = \frac{1}{2} \cdot 4^x$$

b.
$$y = -\left(\frac{5}{2}\right)^x$$

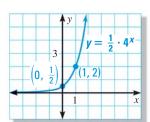
Solution

CLASSIFY FUNCTIONSNote that the

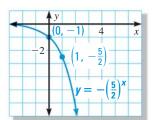
function in part (b) of

Example 2 is not an exponential growth function because a = -1 < 0.

a. Plot $\left(0, \frac{1}{2}\right)$ and (1, 2). Then, from *left* to *right*, draw a curve that begins just above the *x*-axis, passes through the two points, and moves up to the right.



b. Plot (0, -1) and $\left(1, -\frac{5}{2}\right)$. Then, from *left* to *right*, draw a curve that begins just below the *x*-axis, passes through the two points, and moves down to the right.



TRANSLATIONS To graph a function of the form $y = ab^{x-h} + k$, begin by sketching the graph of $y = ab^x$. Then translate the graph horizontally by h units and vertically by k units.

EXAMPLE 3

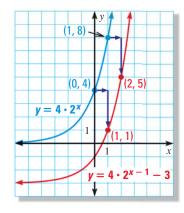
Graph $y = ab^{x-h} + k$ for b > 1

Graph $y = 4 \cdot 2^{x-1} - 3$. State the domain and range.

Solution

Begin by sketching the graph of $y = 4 \cdot 2^x$, which passes through (0, 4) and (1, 8). Then translate the graph right 1 unit and down 3 units to obtain the graph of $y = 4 \cdot 2^{x-1} - 3$.

The graph's asymptote is the line y = -3. The domain is all real numbers, and the range is y > -3.



GUIDED PRACTICE

for Examples 1, 2, and 3

Graph the function. State the domain and range.

1.
$$y = 4^x$$

2.
$$y = \frac{1}{2} \cdot 3^x$$

$$3. \ f(x) = 3^{x+1} + 2$$