Lessons 6.4-6.6

MULTIPLE CHOICE

1. BUSINESS A manager at a clothing store is determining the retail prices of items so that they can be tagged and placed on the sales floor. The equation that the manager uses is $R=C+M C$ where R is the retail price, C is the cost that the store pays for the item, and M is the percent (expressed as a decimal) that the item is marked up. The markup for women's sweaters is 40%. What is the inverse of the function that gives the retail price of women's sweaters? TEKS 2A.4.C

(A) $C=\frac{R}{1.4}$
(B) $C=\frac{R}{0.6}$
(C) $C=1.4 R$
(D) $C=0.6 R$
2. RADICAL EQUATIONS What is the solution of the equation $\sqrt{3 x-5}=4$? TEKS 2A.9.D
(F) 4
(G) 5
(H) 7
(J) 10
3. MONETARY EXCHANGE On a certain day, the function that gives Swedish kronor in terms of U.S. dollars is $k=0.134 d$ where k represents kronor and d represents U.S. dollars. How many dollars do you receive for 25 kronor? TEKS 2A.4.C
(A) $\$ 3.35$
(B) $\$ 21.65$
(C) $\$ 28.35$
(D) $\$ 186.57$
4. RADICAL FUNCTIONS Which radical function has a domain of $x \geq 4$? TEKS 2A.9.C
(F) $y=-5 \sqrt{x+4}$
(G) $y=-\sqrt{x}-4$
(H) $y=4 \sqrt{x}$
(J) $y=2 \sqrt{x-4}+8$
5. VERTICAL MOTION An object is launched upward from ground level and reaches a maximum height of h feet. The initial velocity v (in feet per second) of the object is given by the function $v=8 \sqrt{h}$. What is the approximate maximum height of an object that is launched upward with an initial velocity of 110 feet per second? TEKS 2A.4.C
(A) 83.9 feet
(B) 156.3 feet
(C) 189.1 feet
(D) 311.1 feet

GRIDDED ANSWER

6. WEATHER BALLOONS Your friend releases a weather balloon 50 feet from you. When the balloon is at height h, the distance d between you and the balloon is given by

$$
d=\sqrt{2500+h^{2}}
$$

where h and d are measured in feet. To the nearest foot, what is the height of the balloon when the distance between you and the balloon is 100 feet? TEKS 2A.9.D

7. CONCENTRIC CIRCLES You drop a pebble into a calm pond, causing ripples of concentric circles. The radius r (in feet) of the outer ripple is given by $r(t)=6 t$ where t is the time (in seconds) after the pebble hits the water. The area A (in square feet) of the outer ripple is given by $A(r)=\pi r^{2}$. To the nearest square foot, what is $A(r(2))$? Use 3.14 for π. TEKS 2A.2.A

