EXAMPLE 2 Solve a radical inequality using a graph

Use a graph to solve $\sqrt{\boldsymbol{x}-5}>3$.

Solution

STEP 1 Enter the functions $y=\sqrt{x-5}$ and $y=3$ into a graphing calculator.

STEP 2 Graph the functions from Step 1. Adjust the viewing window so that the x-axis shows $0 \leq x \leq 30$ with a scale of 5 and the y-axis shows $-3 \leq y \leq 8$ with a scale of 1 .

STEP 3 Identity the x-values for which the graph of $y=\sqrt{x-5}$ lies above the graph of $y=3$. You can use the intersect feature to show that the graphs intersect when $x=14$. The graph of $y=\sqrt{x-5}$ lies above the graph of $y=3$ when $x>14$.

The solution of the inequality is $x>14$.

PRACTICE

EXAMPLE 1

on p. 462
for Exs. 1-6

EXAMPLE 2

on p. 463
for Exs. 7-12

Use a table to solve the inequality.

1. $2 \sqrt{x}-5 \geq 3$
2. $\sqrt{x-4} \leq 5$
3. $4 \sqrt{x}+1 \leq 9$
4. $\sqrt{x+7} \geq 3$
5. $\sqrt{x}+\sqrt{x+3} \geq 3$
6. $\sqrt{x}+\sqrt{x-5} \leq 5$

Use a graph to solve the inequality.
7. $2 \sqrt{x}+3 \leq 8$
8. $\sqrt{x+3} \geq 2.6$
9. $7 \sqrt{x}+1<9$
10. $4 \sqrt{3 x-7}>7.8$
11. $\sqrt{x}-\sqrt{x+5}<-1$
12. $\sqrt{x+2}+\sqrt{x-1} \leq 9$
13. SAILBOAT RACE In order to compete in the America's Cup sailboat race, a boat must satisfy the rule

$$
\ell+1.25 \sqrt{s}-9.8 \sqrt[3]{d} \leq 16
$$

where ℓ is the length (in meters) of the boat, s is the area (in square meters) of the sails, and d is the volume (in cubic meters) of water displaced by the boat. A boat has a length of 20 meters and displaces 27 cubic meters of water. What is the maximum allowable value for s ?

