62. CHALLENGE You are trying to determine a truncated pyramid's height, which cannot be measured directly. The height *h* and slant height ℓ of the truncated pyramid are related by the formula shown below.

$$\ell = \sqrt{h^2 + \frac{1}{4}(b_2 - b_1)^2}$$

In the given formula, b_1 and b_2 are the side lengths of the upper and lower bases of the pyramid, respectively. If $\ell = 5$, $b_1 = 2$, and $b_2 = 4$, what is the height of the pyramid?

QUIZ for Lessons 6.5–6.6

Graph the function. Then state the domain and range. (p. 446)

1. $y = 4\sqrt{x}$	2. $y = \sqrt{x} + 3$	3. $g(x) = \sqrt{x+2} - 5$
4. $y = -\frac{1}{2}\sqrt[3]{x}$	5. $f(x) = \sqrt[3]{x} - 4$	6. $y = \sqrt[3]{x-3} + 2$

Solve the equation. Check for extraneous solutions. (p. 452)

7. $\sqrt{6x+15} = 9$	8. $\frac{1}{4}(7x+8)^{3/2}=54$	9. $\sqrt[3]{3x+5} + 2 = 5$
10. $x - 3 = \sqrt{10x - 54}$	11. $\sqrt{4x-4} = \sqrt{5x-1} - 1$	12. $\sqrt[3]{\frac{4}{5}x-9} = \sqrt[3]{x-6}$

13. ASTRONOMY According to Kepler's third law of planetary motion, the function $P = 0.199a^{3/2}$ relates a planet's orbital period P (in days) to the length a (in millions of kilometers) of the orbit's minor axis. The orbital period of Mars is about 1.88 years. What is the length of the orbit's minor axis? (*p. 452*)