EXAMPLE 5
on p. 454
for Exs. 34-44

EXAMPLE 6
on p. 455
for Exs. 45-52

SOLVING RADICAL EQUATIONS Solve the equation. Check for extraneous solutions.
34. $x-6=\sqrt{3 x}$
35. $x-10=\sqrt{9 x}$
36. $x=\sqrt{16 x+225}$
37. $\sqrt{21 x+1}=x+5$
38. $\sqrt{44-2 x}=x-10$
39. $\sqrt{x^{2}+4}=x+5$
40. $x-2=\sqrt{\frac{3}{2} x-2}$
41. $\sqrt[4]{3-8 x^{2}}=2 x$
42. $\sqrt[3]{8 x^{3}-1}=2 x-1$
43. munstrageiping What is (are) the solution(s) of $\sqrt{32 x-64}=2 x$?
(A) 4
(B) -16
(C) $4,-16$
(D) 1,3
44. Shomstresponise Explain how you can tell that $\sqrt{x+4}=-5$ has no solution without solving it.

EQUATIONS WITH TWO RADICALS Solve the equation. Check for extraneous solutions.
45. $\sqrt{4 x+1}=\sqrt{x+10}$
46. $\sqrt[3]{12 x-5}-\sqrt[3]{8 x+15}=0$
47. $\sqrt{3 x-8}+1=\sqrt{x+5}$
48. $\sqrt{\frac{2}{3} x-4}=\sqrt{\frac{2}{5} x-7}$
49. $\sqrt{x+2}=2-\sqrt{x}$
50. $\sqrt{2 x+3}+2=\sqrt{6 x+7}$
51. $\sqrt{2 x+5}=\sqrt{x+2}+1$
52. $\sqrt{5 x+6}+3=\sqrt{3 x+3}+4$

SOLVING SYSTEMS Solve the system of equations.
53. $\begin{aligned} 3 \sqrt{x}+5 \sqrt{y} & =31 \\ 5 \sqrt{x}-5 \sqrt{y} & =-15\end{aligned}$
54. $5 \sqrt{x}-2 \sqrt{y}=4 \sqrt{2}$
$2 \sqrt{x}+3 \sqrt{y}=13 \sqrt{2}$
55. ChALLENGE Give an example of a radical equation that has two extraneous solutions.

PROBLEM SOLVING

EXAMPLE 2
on p. 453
for Exs. 56-57
56. MAXIMUM SPEED In an amusement park ride called the Sky Flyer, a rider suspended by a cable swings back and forth like a pendulum from a tall tower. A rider's maximum speed v (in meters per second) occurs at the bottom of each swing and can be approximated by $v=\sqrt{2 g h}$ where h is the height (in meters) at the top of each swing and g is the acceleration due to gravity $\left(g \approx 9.8 \mathrm{~m} / \mathrm{sec}^{2}\right)$. If a rider's maximum speed was 15 meters per second, what was the rider's height at the top of the swing?

