on p. 454	solutions.		
for Exs. 34–44	34. $x - 6 = \sqrt{3x}$	35. $x - 10 = \sqrt{9x}$	36. $x = \sqrt{16x + 225}$
	37. $\sqrt{21x+1} = x+5$	38. $\sqrt{44-2x} = x - 10$	39. $\sqrt{x^2+4} = x+5$
	40. $x-2 = \sqrt{\frac{3}{2}x-2}$	41. $\sqrt[4]{3-8x^2} = 2x$	42. $\sqrt[3]{8x^3 - 1} = 2x - 1$
	43. AMARTSREAGHDINE What is (are) the solution(s) of $\sqrt{32x - 64} = 2x$?		
	A 4 B	-16 C 4, -16	D 1, 3
	44. ACCENT RESIDENCE <i>Explain</i> how you can tell that $\sqrt{x + 4} = -5$ has no solution without solving it.		
EXAMPLE 6 on p. 455 for Exs. 45–52	EQUATIONS WITH TWO RADICALS Solve the equation. Check for extraneous solutions.		
	45. $\sqrt{4x+1} = \sqrt{x+10}$	46. $\sqrt[3]{12x-5}$	$-\sqrt[3]{8x+15} = 0$
	47. $\sqrt{3x-8} + 1 = \sqrt{x+5}$	48. $\sqrt{\frac{2}{3}x-4}$ =	$=\sqrt{\frac{2}{5}x-7}$
	49. $\sqrt{x+2} = 2 - \sqrt{x}$	50. $\sqrt{2x+3}$ +	$-2 = \sqrt{6x + 7}$
	51. $\sqrt{2x+5} = \sqrt{x+2} + 1$	52. $\sqrt{5x+6}$ +	$-3 = \sqrt{3x+3} + 4$
	SOLVING SYSTEMS Solve the system of equations.		
	53. $3\sqrt{x} + 5\sqrt{y} = 31$	54. $5\sqrt{x} - 2\sqrt{2}$	$\overline{y} = 4\sqrt{2}$
	$5\sqrt{x} - 5\sqrt{y} = -15$	$2\sqrt{x} + 3\sqrt{x}$	$\bar{\nu} = 13\sqrt{2}$

55. CHALLENGE Give an example of a radical equation that has two extraneous solutions.

PROBLEM SOLVING

EXAMPLE 2 on p. 453 for Exs. 56–57 **56. MAXIMUM SPEED** In an amusement park ride called the Sky Flyer, a rider suspended by a cable swings back and forth like a pendulum from a tall tower. A rider's maximum speed v (in meters per second) occurs at the bottom of each swing and can be approximated by $v = \sqrt{2gh}$ where *h* is the height (in meters) at the top of each swing and *g* is the acceleration due to gravity ($g \approx 9.8 \text{ m/sec}^2$). If a rider's maximum speed was 15 meters per second, what was the rider's height at the top of the swing?

TEXAS @HomeTuptcoblerfosqlxiblehelpolxingsbadprat.com