SQUARING TWICE When an equation contains two radicals, you may need to square each side twice in order to eliminate both radicals.

EXAMPLE 6 Solve an equation with two radicals

Solve $\sqrt{x+2}+1=\sqrt{3-x}$.

Solution

METHOD 1 Solve using algebra.

$$
\begin{array}{rlrl}
\sqrt{x+2}+1 & =\sqrt{3-x} & & \text { Write original equation. } \\
(\sqrt{x+2}+1)^{2} & =(\sqrt{3-x})^{2} & & \text { Square each side. } \\
x+2+2 \sqrt{x+2}+1 & =3-x & & \text { Expand left side and simplify right side. } \\
2 \sqrt{x+2} & =-2 x & & \text { Isolate radical expression. } \\
\sqrt{x+2} & =-x & & \text { Divide each side by } \mathbf{2} . \\
(\sqrt{x+2})^{2} & =(-x)^{2} & & \text { Square each side again. } \\
x+2 & =x^{2} & & \text { Simplify. } \\
0 & =x^{2}-x-2 & & \text { Write in standard form. } \\
0 & =(x-2)(x+1) & & \text { Factor. } \\
x-2=0 & & \text { or } \quad x+1=0 & \\
\text { Zero-product property } \\
x=2 & & \text { or } \quad x=-1 & \\
\text { Solve for } x .
\end{array}
$$

Check $x=2$ in the original equation. \mid Check $x=-1$ in the original equation.

$$
\begin{aligned}
\sqrt{x+2}+1 & =\sqrt{3-x} \\
\sqrt{2+2}+1 & \stackrel{?}{=} \sqrt{3-2} \\
\sqrt{4}+1 & \stackrel{?}{=} \sqrt{1} \\
3 & \neq 1
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{x+2}+1=\sqrt{3-x} \\
& \sqrt{-1+2}+1 \stackrel{?}{=} \sqrt{3-(-1)} \\
& \sqrt{1}+1 \stackrel{?}{=} \sqrt{4} \\
& 2=2 \checkmark
\end{aligned}
$$

- The only solution is -1 . (The apparent solution 2 is extraneous.)

METHOD 2 Use a graph to solve the equation.
Use a graphing calculator to graph $y_{1}=\sqrt{x+2}+1$ and $y_{2}=\sqrt{3-x}$. Then find the intersection points of the two graphs by using the intersect feature. You will find that the only point of intersection is ($-1,2$). Therefore, -1 is the only solution of the equation
 $\sqrt{x+2}+1=\sqrt{3-x}$.

GUIDED PRACTICE for Examples 5 and 6
Solve the equation. Check for extraneous solutions.
11. $x-\frac{1}{2}=\sqrt{\frac{1}{4} x}$
12. $\sqrt{10 x+9}=x+3$
13. $\sqrt{2 x+5}=\sqrt{x+7}$
14. $\sqrt{x+6}-2=\sqrt{x-2}$

