EXAMPLE 4 Solve an equation with a rational exponent Solve $(x + 2)^{3/4} - 1 = 7$. $(x+2)^{3/4} - 1 = 7$ Write original equation. $(x+2)^{3/4}=8$ Add 1 to each side. $[(x+2)^{3/4}]^{4/3} = 8^{4/3}$ Raise each side to the power $\frac{4}{2}$. $x + 2 = (8^{1/3})^4$ Apply properties of exponents. $x + 2 = 2^4$ Simplify. x + 2 = 16Simplify. x = 14Subtract 2 from each side.

▶ The solution is 14. Check this in the original equation.

GUIDED PRACTICE for Examples 3 and 4

Solve the equation. Check your solution.

5. $3x^{3/2} = 375$	6. $-2x^{3/4} = -16$	7. $-\frac{2}{3}x^{1/5} = -2$
8. $(x+3)^{5/2} = 32$	9. $(x-5)^{4/3} = 81$	10. $(x+2)^{2/3}+3=7$

EXTRANEOUS SOLUTIONS Raising each side of an equation to the same power may introduce extraneous solutions. When you use this procedure, you should always check each apparent solution in the *original* equation.

EXAMPLE 5 Solve an equation with an extraneous solution

Solve $x + 1 = \sqrt{7x + 15}$. $x + 1 = \sqrt{7x + 15}$ Write original equation. $(x + 1)^2 = (\sqrt{7x + 15})^2$ Square each side. $x^2 + 2x + 1 = 7x + 15$ Expand left side and simplify right side. $x^2 - 5x - 14 = 0$ Write in standard form. **REVIEW FACTORING** $\rightarrow (x - 7)(x + 2) = 0$ Factor. For help with factoring, x - 7 = 0 or x + 2 = 0Zero-product property see p. 252. x = 7 or x = -2Solve for x. CHECK Check x = 7 in the original equation. Check x = -2 in the original equation. $x + 1 = \sqrt{7x + 15}$ $x + 1 = \sqrt{7x + 15}$ $-2 + 1 \stackrel{?}{=} \sqrt{7(-2) + 15}$ $7 + 1 \stackrel{?}{=} \sqrt{7(7) + 15}$ $-1 \stackrel{?}{=} \sqrt{1}$ $8 \stackrel{?}{=} \sqrt{64}$ $-1 \neq 1$ $8 = 8 \checkmark$ The only solution is 7. (The apparent solution -2 is extraneous.)

454 Chapter 6 Rational Exponents and Radical Functions