6.6 Solve Radical Equations
 2A.9.B, 2A.9.C,

2A.9.D, 2A.9.F
Before

Why?
You solved polynomial equations.
You will solve radical equations.
So you can calculate hang time, as in Ex. 60.

Key Vocabulary

- radical equation
- extraneous
solution, p. 52

Equations with radicals that have variables in their radicands are called radical equations. An example of a radical equation is $\sqrt[3]{2 x+7}=3$.

KEY CONCEPT
 For Your Notebook

Solving Radical Equations

To solve a radical equation, follow these steps:
STEP 1 Isolate the radical on one side of the equation, if necessary.
STEP 2 Raise each side of the equation to the same power to eliminate the radical and obtain a linear, quadratic, or other polynomial equation.

STEP 3 Solve the polynomial equation using techniques you learned in previous chapters. Check your solution.

EXAMPLE 1 Solve a radical equation

Solve $\sqrt[3]{2 x+7}=3$.

$$
\begin{aligned}
\sqrt[3]{2 x+7} & =3 & & \text { Write original equation. } \\
(\sqrt[3]{2 x+7})^{3} & =3^{3} & & \text { Cube each side to eliminate the radical. } \\
2 x+7 & =27 & & \text { Simplify. } \\
2 x & =20 & & \text { Subtract } 7 \text { from each side. } \\
x & =10 & & \text { Divide each side by } 2 .
\end{aligned}
$$

CHECK Check $x=10$ in the original equation.

$$
\begin{aligned}
\sqrt[3]{2(10)+7} & \stackrel{?}{=} 3 & & \text { Substitute } 10 \text { for } x . \\
\sqrt[3]{27} & \stackrel{?}{=} 3 & & \text { Simplify. } \\
3 & =3 \checkmark & & \text { Solution checks. }
\end{aligned}
$$

Guided Practice for Example 1

Solve the equation. Check your solution.

1. $\sqrt[3]{x}-9=-1$
2. $\sqrt{x+25}=4$
3. $2 \sqrt[3]{x-3}=4$
