38. DRAG RACING For a given total weight, the speed of a car at the end of a drag race is a function of the car's power. For a car with a total weight of 3500 pounds, the speed s (in miles per hour) can be modeled by $s=14.8 \sqrt[3]{p}$ where p is the power (in horsepower). Graph the model. Then determine the power of a 3500 pound car that reaches a speed of 200 miles per hour.
39. MULTIPLE REPRESENTATIONS Under certain conditions, a skydiver's terminal velocity v_{t} (in feet per second) is given by

$$
v_{t}=33.7 \sqrt{\frac{W}{A}}
$$

where W is the weight of the skydiver (in pounds) and A is the skydiver's crosssectional surface area (in square feet). Note that skydivers can vary their cross-sectional surface area by changing positions as they fall.

a. Writing an Equation Write an equation that gives v_{t} as a function of A for a skydiver who weighs 165 pounds.
b. Making a Table Make a table of values for the equation from part (a).
c. Drawing a Graph Use your table to graph the equation.
40. ChAllenge The surface area S of a right circular cone with a slant height of 1 unit is given by $S=\pi r+\pi r^{2}$ where r is the cone's radius.
a. Use completing the square to show the following:

$$
r=\frac{1}{\sqrt{\pi}} \sqrt{S+\frac{\pi}{4}}-\frac{1}{2}
$$

b. Graph the equation from part (a) using a graphing calculator.
c. Find the radius of a right circular cone with a slant
 height of 1 unit and a surface area of $\frac{3 \pi}{4}$ square units.

MIXED REVIEW FOR TAKS

TAKS PRACTICE at classzone.com

REVIEW

Lesson 4.10;
TAKS Workbook
41. TAKS PRACTICE Which equation best represents the relationship between x and y shown in the table? TAKS Obj. 1
(A) $y=25 x+12$
(B) $y=45 x-8 x^{2}$
(C) $y=8 x^{2}-45 x$
(D) $y=70-33 x^{3}$
42. TAKS PRACTICE The two polygons are similar. What is the value of y ? TAKS Obj. 6
(F) 24
(G) 134
(H) 168
(J) 204

