26. ERROR ANALYSIS A student tried to explain how the graphs of $y=-2 \sqrt[3]{x}$ and $y=-2 \sqrt[3]{x+1}-3$ are related. Describe and correct the error.

The graph of $y=-2 \sqrt[3]{x+1}-3$ is the graph of $y=-2 \sqrt[3]{x}$ translated right 1 unit and down 3 units.
27. Miulksireaceionce If the graph of $y=3 \sqrt[3]{x}$ is shifted left 2 units, what is the equation of the translated graph?
(A) $y=3 \sqrt[3]{x-2}$
(B) $y=3 \sqrt[3]{x}-2$
(C) $y=3 \sqrt[3]{x+2}$
(D) $y=3 \sqrt[3]{x}+2$

REASONING Find the domain and range of the function without graphing. Explain how you found your answers.
28. $y=\sqrt{x+5}$
29. $y=\sqrt{x-12}$
30. $y=\frac{1}{3} \sqrt{x}-4$
31. $y=\frac{1}{2} \sqrt[3]{x+7}$
32. $g(x)=\sqrt[3]{x+7}$
33. $f(x)=\frac{1}{4} \sqrt{x-3}+6$
34. CHALLENGE Graph $y=\sqrt[4]{x}, y=\sqrt[5]{x}, y=\sqrt[6]{x}$, and $y=\sqrt[7]{x}$ on a graphing calculator. Make generalizations about the graph of $y=\sqrt[n]{x}$ when n is even and when n is odd.

Problem Solving

EXAMPLE 3
on p. 447
for Exs. 35-36
35. INDIRECT MEASUREMENT The distance d (in miles) that a pilot can see to the horizon can be modeled by $d=1.22 \sqrt{a}$ where a is the plane's altitude (in feet above sea level). Graph the model on a graphing calculator. Then determine at what altitude the pilot can see 8 miles.

36. PENDULUMS Use the model $T=1.11 \sqrt{\ell}$ for the period of a pendulum from Example 3 on page 447.
a. Find the period of a pendulum with a length of 2 feet.
b. Find the length of a pendulum with a period of 2 seconds.

37. WSHORSTREGConnce The speed v (in meters per second) of sound waves in air depends on the temperature K (in kelvins) and can be modeled by:

$$
v=331.5 \sqrt{\frac{K}{273.15}}, K \geq 0
$$

a. Kelvin temperature K is related to Celsius temperature C by the formula $K=273.15+C$. Write an equation that gives the speed v of sound waves in air as a function of the temperature C in degrees Celsius.
b. What are a reasonable domain and range for the function from part (a)?

