TRANSLATIONS OF RADICAL FUNCTIONS The procedure for graphing functions of the form $y=a \sqrt{x-h}+k$ and $y=a \sqrt[3]{x-h}+k$ is described below.

KEY CONCEPT

For Your Notebook

Graphs of Radical Functions

To graph $y=a \sqrt{x-h}+k$ or $y=a \sqrt[3]{x-h}+k$, follow these steps:
STEP 1 Sketch the graph of $y=a \sqrt{x}$ or $y=a \sqrt[3]{x}$.
STEP 2 Translate the graph horizontally h units and vertically k units.

EXAMPLE 4 Graph a translated square root function

Graph $y=-2 \sqrt{ } x-3+2$. Then state the domain and range.

Solution

STEP 1 Sketch the graph of $y=-2 \sqrt{x}$ (shown in blue). Notice that it begins at the origin and passes through the point $(1,-2)$.
STEP 2 Translate the graph. For $y=-2 \sqrt{x-3}+2$, $h=3$ and $k=2$. So, shift the graph of $y=-2 \sqrt{x}$ right 3 units and up 2 units. The resulting graph starts at $(3,2)$ and passes through $(4,0)$.

From the graph, you can see that the domain of the
 function is $x \geq 3$ and the range of the function is $y \leq 2$.

[^0]
EXAMPLE 5 Graph a translated cube root function

Graph $y=3 \sqrt[3]{x+4}-1$. Then state the domain and range.

Solution

STEP 1 Sketch the graph of $y=3 \sqrt[3]{x}$ (shown in blue). Notice that it passes through the origin and the points $(-1,-3)$ and $(1,3)$.

STEP 2 Translate the graph. Note that for $y=3 \sqrt[3]{x+4}-1, h=-4$ and $k=-1$. So, shift the graph of $y=3 \sqrt[3]{x}$ left 4 units and down 1 unit. The resulting graph passes through the points $(-5,-4),(-4,-1)$, and $(-3,2)$

From the graph, you can see that the domain and range of the function are both all real numbers.

AhimatedAlgebra at classzone.com

[^0]: AnimatedAlgebra at classzone.com

