TRANSLATIONS OF RADICAL FUNCTIONS The procedure for graphing functions of the form $y = a\sqrt{x-h} + k$ and $y = a\sqrt[3]{x-h} + k$ is described below.

EXAMPLE 4 Graph a translated square root function

Graph $y = -2\sqrt{x-3} + 2$. Then state the domain and range.

Solution

STEP 1 Sketch the graph of $y = -2\sqrt{x}$ (shown in blue). Notice that it begins at the origin and passes through the point (1, -2).

STEP 2 Translate the graph. For $y = -2\sqrt{x-3} + 2$, h = 3 and k = 2. So, shift the graph of $y = -2\sqrt{x}$ right 3 units and up 2 units. The resulting graph starts at (3, 2) and passes through (4, 0).

From the graph, you can see that the domain of the function is $x \ge 3$ and the range of the function is $y \le 2$.

Animated Algebra at classzone.com

EXAMPLE 5 Graph a translated cube root function

Graph $y = 3\sqrt[3]{x+4} - 1$. Then state the domain and range.

Solution

- **STEP 1** Sketch the graph of $y = 3\sqrt[3]{x}$ (shown in blue). Notice that it passes through the origin and the points (-1, -3) and (1, 3).
- *STEP 2* **Translate** the graph. Note that for $y = 3\sqrt[3]{x+4} 1$, h = -4 and k = -1. So, shift the graph of $y = 3\sqrt[3]{x}$ left 4 units and down 1 unit. The resulting graph passes through the points (-5, -4), (-4, -1), and (-3, 2).

From the graph, you can see that the domain and range of the function are both all real numbers.

Animated Algebra at classzone.com

REVIEW TRANSLATIONS For help with translating graphs, see p. 123.