EXAMPLE 2 Graph a cube root function

Graph $y=-3 \sqrt[3]{x}$, and state the domain and range. Compare the graph with the graph of $y=\sqrt[3]{x}$.

Solution

Make a table of values and sketch the graph.

x	-2	-1	0	1	2
y	3.78	3	0	-3	-3.78

The domain and range are all real numbers.
The graph of $y=-3 \sqrt[3]{x}$ is a vertical stretch of the graph of $y=\sqrt[3]{x}$ by a factor of 3 followed by a

AND SHRINKS

REVIEW STRETCHES

For help with vertical stretches and shrinks, reflection in the x-axis.

EXAMPLE 3 SAKG REASGNENGpMabteritep Problem

PENDULUMS The period of a pendulum is the time the pendulum takes to complete one back-and-forth swing. The period T (in seconds) can be modeled by $T=1.11 \sqrt{\ell}$ where ℓ is the pendulum's length (in feet).

- Use a graphing calculator to graph the model.
- How long is a pendulum with a period of 3 seconds?

Solution

STEP 1 Graph the model. Enter the equation $y=1.11 \sqrt{ } x$. The graph is shown below.

STEP 2 Use the trace feature to find the value of x when $y=3$. The graph shows $x \approx 7.3$.

- A pendulum with a period of 3 seconds is about 7.3 feet long.

Guided Practice for Examples 1, 2, and 3

Graph the function. Then state the domain and range.

1. $y=-3 \sqrt{x}$
2. $f(x)=\frac{1}{4} \sqrt{x}$
3. $y=-\frac{1}{2} \sqrt[3]{x}$
4. $g(x)=4 \sqrt[3]{x}$
5. WHAT IF? Use the model in Example 3 to find the length of a pendulum with a period of 1 second.
