EXAMPLE 2

Graph a cube root function

Graph $y = -3\sqrt[3]{x}$, and state the domain and range. Compare the graph with the graph of $y = \sqrt[3]{x}$.

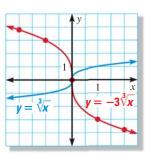
Solution

Make a table of values and sketch the graph.

X	-2	-1	0	1	2
y	3.78	3	0	-3	-3.78

The domain and range are all real numbers.

The graph of $y = -3\sqrt[3]{x}$ is a vertical stretch of the graph of $y = \sqrt[3]{x}$ by a factor of 3 followed by a reflection in the *x*-axis.



REVIEW STRETCHES

For help with vertical

stretches and shrinks,

AND SHRINKS

see p. 123.

EXAMPLE 3 TAKE REASONING problemstep Problem

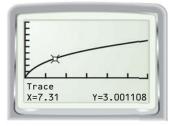
PENDULUMS The *period* of a pendulum is the time the pendulum takes to complete one back-and-forth swing. The period *T* (in seconds) can be modeled by $T = 1.11\sqrt{\ell}$ where ℓ is the pendulum's length (in feet).

- Use a graphing calculator to graph the model.
- How long is a pendulum with a period of 3 seconds?

Solution

STEP 1 **Graph** the model. Enter the equation $y = 1.11 \forall x$. The graph is shown below.

STEP 2 Use the *trace* feature to find the value of x when y = 3. The graph shows $x \approx 7.3$.



A pendulum with a period of 3 seconds is about 7.3 feet long.

GUIDED PRACTICE for Examples 1, 2, and 3

Graph the function. Then state the domain and range.

1.
$$y = -3\sqrt{x}$$

2.
$$f(x) = \frac{1}{4} \sqrt{x}$$

1.
$$y = -3\sqrt{x}$$
 2. $f(x) = \frac{1}{4}\sqrt{x}$ **3.** $y = -\frac{1}{2}\sqrt[3]{x}$ **4.** $g(x) = 4\sqrt[3]{x}$

4.
$$g(x) = 4\sqrt[3]{x}$$

5. WHAT IF? Use the model in Example 3 to find the length of a pendulum with a period of 1 second.