### 6.5 Graph Square Root and Cube Root Functions <br> 2A.4.B, 2A.9.A, 2A.9.B, 2A.9.F

Before

Why?

You graphed polynomial functions.
You will graph square root and cube root functions.
So you can graph the speed of a racing car, as in Ex. 38.


Key Vocabulary

- radical function
- parent function, p. 89

In Lesson 6.4, you saw the graphs of $y=\sqrt{x}$ and $y=\sqrt[3]{x}$. These are examples of radical functions. In this lesson, you will learn to graph functions of the form $y=a \sqrt{x-h}+k$ and $y=a \sqrt[3]{x-h}+k$.

## KEY CONCEPT

## For Your Notebook

## Parent Functions for Square Root and Cube Root Functions

The parent function for the family of square root functions is $f(x)=\sqrt{x}$.


Domain: $\boldsymbol{x} \geq \mathbf{0}$, Range: $\boldsymbol{y} \geq \mathbf{0}$

The parent function for the family of cube root functions is $g(x)=\sqrt[3]{x}$.


Domain and range: all real numbers

## EXAMPLE 1 Graph a square root function

Graph $y=\frac{1}{2} \sqrt{x}$, and state the domain and range. Compare the graph with the graph of $y=\sqrt{x}$.

## Solution

Make a table of values and sketch the graph.

| $x$ | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 0 | 0.5 | 0.71 | 0.87 | 1 |

The radicand of a square root must be nonnegative. So, the domain is $x \geq 0$. The range is $y \geq 0$.
The graph of $y=\frac{1}{2} \sqrt{x}$ is a vertical shrink of the graph
 of $y=\sqrt{x}$ by a factor of $\frac{1}{2}$.

