6.5 Graph Square Root and Cube Root Functions

2A.9.B, 2A.9.F

You graphed polynomial functions. You will graph square root and cube root functions. So you can graph the speed of a racing car, as in Ex. 38.

Key Vocabulary

radical function parent function,

p. 89

In Lesson 6.4, you saw the graphs of $y = \sqrt{x}$ and $y = \sqrt[3]{x}$. These are examples of **radical functions**. In this lesson, you will learn to graph functions of the form $y = a\sqrt{x-h} + k$ and $y = a\sqrt[3]{x-h} + k$.

EXAMPLE 1 Graph a square root function

Graph $y = \frac{1}{2}\sqrt{x}$, and state the domain and range. Compare the graph with the graph of $y = \sqrt{x}$.

Solution

Make a table of values and sketch the graph.

x	0	1	2	3	4
у	0	0.5	0.71	0.87	1

REVIEW DOMAIN AND RANGE

For help with the domain and range of a function, see p. 72.

The radicand of a square root must be nonnegative. So, the domain is $x \ge 0$. The range is $y \ge 0$.

The graph of $y = \frac{1}{2}\sqrt{x}$ is a vertical shrink of the graph of $y = \sqrt{x}$ by a factor of $\frac{1}{2}$.