PROBLEM SOLVING

EXAMPLE 3

on p. 439
for Exs. 46-48

EXAMPLES
6 and 7
on pp. 441-442
for Exs. 49-50
46. EXCHANGE RATES The euro is the unit of currency for the European Union. On a certain day, the number E of euros that could be obtained for D dollars was given by this function:

$$
E=0.81419 D
$$

Find the inverse of the function. Then use the inverse to find the number of dollars that could be obtained for 250 euros on that day.

47. MULTI-STEP PROBLEM When calibrating a spring scale, you need to know how far the spring stretches for various weights. Hooke's law states that the length a spring stretches is proportional to the weight attached to it. A model for one scale is $\ell=0.5 w+3$ where ℓ is the total length (in inches) of the stretched spring and w is the weight (in pounds) of the object.
a. Find the inverse of the given model.
b. If you place a weight on the scale and the spring stretches to a total length of 6.5 inches, how heavy is the weight?

48. Exalentemanananse At the start of a dog sled race in Anchorage, Alaska, the temperature was $5^{\circ} \mathrm{C}$. By the end of the race, the temperature was $-10^{\circ} \mathrm{C}$. The formula for converting temperatures from degrees Fahrenheit F to degrees Celsius C is $C=\frac{5}{9}(F-32)$.
a. Find the inverse of the given model. Describe what information you can obtain from the inverse.
b. Find the Fahrenheit temperatures at the start and end of the race.
c. Use a graphing calculator to graph the original function and its inverse. Find the temperature that is the same on both temperature scales.
49. BOAT SPEED The maximum hull speed v (in knots) of a boat with a displacement hull can be approximated by

$$
v=1.34 \sqrt{\ell}
$$

where ℓ is the length (in feet) of the boat's waterline. Find the inverse of the model. Then find the waterline length needed to achieve a maximum speed of 7.5 knots.

AnimatedAlgebra at classzone.com
50. BIOLOGY The body surface area A (in square meters) of a person with a mass of 60 kilograms can be approximated by the model

$$
A=0.2195 h^{0.3964}
$$

where h is the person's height (in centimeters). Find the inverse of the model. Then estimate the height of a 60 kilogram person who has a body surface area of 1.6 square meters.

