EXAMPLE 7 Use an inverse power model to make a prediction

Use the inverse power model from Example 6 to predict the year when the average ticket price will reach \$58.

Solution

 $t = \left(\frac{P}{35}\right)^{5.2}$ Write inverse power model. $= \left(\frac{58}{35}\right)^{5.2}$ Substitute 58 for *P*. ≈ 14 Use a calculator.

> You can predict that the average ticket price will reach \$58 about 14 years after 1995, or in 2009.

CTICE for Examples 6 and 7

11. **TICKET PRICES** The average price *P* (in dollars) for a Major League Baseball ticket can be modeled by $P = 10.7t^{0.272}$ where *t* is the number of years since 1995. Write the inverse model. Then use the inverse to predict the year when the average ticket price will reach \$25.

6.4 EXERCISES

HOMEWORK KEY

 WORKED-OUT SOLUTIONS on p. WS1 for Exs. 7, 15, and 49
TAKS PRACTICE AND REASONING Exs. 14, 21, 28, 48, 52, and 53

Skill Practice

EXAMPLE 1 on p. 438 for Exs. 3–13

- 1. **VOCABULARY** State the definition of an inverse relation.
- 2. WERRING Explain how to determine whether a function g is an inverse of f.

INVERSE RELATIONS Find an equation for the inverse relation.

3. $y = 4x - 1$	4. $y = -2x + 5$	5. $y = 7x - 6$
6. $y = 10x - 28$	7. y = 12x + 7	8. $y = -18x - 5$
9. $y = 5x + \frac{1}{3}$	10. $y = -\frac{2}{3}x + 2$	11. $y = -\frac{3}{5}x + \frac{7}{5}$

ERROR ANALYSIS *Describe* and correct the error in finding the inverse of the relation.

