EXAMPLE 5 Find the inverse of a cubic function

Consider the function $f(x)=2 x^{3}+1$. Determine whether the inverse of f is a function. Then find the inverse.

Solution

Graph the function f. Notice that no horizontal line intersects the graph more than once. So, the inverse of f is itself a function. To find an equation for f^{-1}, complete the following steps:

$$
\begin{aligned}
f(x) & =2 x^{3}+1 & & \text { Write original function. } \\
y & =2 x^{3}+1 & & \text { Replace } f(x) \text { with } y . \\
x & =2 y^{3}+1 & & \text { Switch } x \text { and } y . \\
x-1 & =2 y^{3} & & \text { Subtract } 1 \text { from each side. } \\
\frac{x-1}{2} & =y^{3} & & \text { Divide each side by } 2 . \\
\sqrt[3]{\frac{x-1}{2}} & =y & & \text { Take cube root of each side. }
\end{aligned}
$$

- The inverse of f is $f^{-1}(x)=\sqrt[3]{\frac{x-1}{2}}$.

Guided Practice for Examples 4 and 5

Find the inverse of the function. Then graph the function and its inverse.
5. $f(x)=x^{6}, x \geq 0$
6. $g(x)=\frac{1}{27} x^{3}$
7. $f(x)=-\frac{64}{125} x^{3}$
8. $f(x)=-x^{3}+4$
9. $f(x)=2 x^{5}+3$
10. $g(x)=-7 x^{5}+7$

ExAMPLE 6 Find the inverse of a power model

TICKET PRICES The average price P (in dollars) for a National Football League ticket can be modeled by

$$
P=35 t^{0.192}
$$

where t is the number of years since 1995 . Find the inverse model that gives time as a function of the average ticket price.

Solution

$$
\begin{aligned}
P & =35 t^{0.192} & & \text { Write original model. } \\
\frac{P}{35} & =t^{0.192} & & \text { Divide each side by } 35 . \\
\left(\frac{P}{35}\right)^{1 / 0.192} & =\left(t^{0.192}\right)^{1 / 0.192} & & \text { Raise each side to the power } \frac{1}{0.192} . \\
\left(\frac{P}{35}\right)^{5.2} & \approx t & & \text { Simplify. This is the inverse model. }
\end{aligned}
$$

