EXAMPLE 5 Find the inverse of a cubic function

Consider the function $f(x) = 2x^3 + 1$. Determine whether the inverse of f is a function. Then find the inverse.

Solution

Graph the function *f*. Notice that no horizontal line intersects the graph more than once. So, the inverse of *f* is itself a function. To find an equation for f^{-1} , complete the following steps:

$$f(x) = 2x^3 + 1$$
Write original function. $y = 2x^3 + 1$ Replace $f(x)$ with y . $x = 2y^3 + 1$ Switch x and y . $x - 1 = 2y^3$ Subtract 1 from each side. $\frac{x-1}{2} = y^3$ Divide each side by 2. $\sqrt[3]{\frac{x-1}{2}} = y$ Take cube root of each side.

The inverse of
$$f$$
 is $f^{-1}(x) = \sqrt[3]{\frac{x-1}{2}}$.

GUIDED PRACTICE for Examples 4 and 5

Find the inverse of the function. Then graph the function and its inverse.

5. $f(x) = x^6, x \ge 0$	6. $g(x) = \frac{1}{27}x^3$	7. $f(x) = -\frac{64}{125}x^3$
8. $f(x) = -x^3 + 4$	9. $f(x) = 2x^5 + 3$	10. $g(x) = -7x^5 + 7$

EXAMPLE 6 Find the inverse of a power model

TICKET PRICES The average price *P* (in dollars) for a National Football League ticket can be modeled by

$$P = 35t^{0.192}$$

where *t* is the number of years since 1995. Find the inverse model that gives time as a function of the average ticket price.

Solution

$$P = 35t^{0.192}$$
Write original model. $\frac{P}{35} = t^{0.192}$ Divide each side by 35. $\frac{P}{35}$ $t^{0.192}$ Raise each side to the power $\frac{1}{0.192}$. $\left(\frac{P}{35}\right)^{5.2} \approx t$ Simplify. This is the inverse model.