INVERSES OF NONLINEAR FUNCTIONS The graphs of the power functions $f(x)=x^{2}$ and $g(x)=x^{3}$ are shown below along with their reflections in the line $y=x$. Notice that the inverse of $g(x)=x^{3}$ is a function, but that the inverse of $f(x)=x^{2}$ is not a function.

If the domain of $f(x)=x^{2}$ is restricted to only nonnegative real numbers, then the inverse of f is a function.

EXAMPLE 4 Find the inverse of a power function

Find the inverse of $f(x)=x^{2}, x \geq 0$. Then graph f and f^{-1}.

Solution

$$
\begin{aligned}
f(x) & =x^{2} & & \text { Write original function. } \\
y & =x^{2} & & \text { Replace } f(x) \text { with } y . \\
x & =y^{2} & & \text { Switch } x \text { and } y . \\
\pm \sqrt{x} & =y & & \text { Take square roots of each side. }
\end{aligned}
$$

The domain of f is restricted to nonnegative values of x. So, the range of f^{-1} must also be restricted to nonnegative values, and therefore the inverse is $f^{-1}(x)=\sqrt{x}$. (If the domain was restricted to $x \leq 0$, you would choose $f^{-1}(x)=-\sqrt{x}$.)

HORIZONTAL LINE TEST You can use the graph of a function f to determine whether the inverse of f is a function by applying the horizontal line test.

KEY CONCEPT

For Your Notebook

Horizontal Line Test

The inverse of a function f is also a function if and only if no horizontal line intersects the graph of f more than once.

Inverse is a function

Inverse is not a function

