INVERSES OF NONLINEAR FUNCTIONS The graphs of the power functions $f(x) = x^2$ and $g(x) = x^3$ are shown below along with their reflections in the line y = x. Notice that the inverse of $g(x) = x^3$ is a function, but that the inverse of $f(x) = x^2$ is *not* a function.

If the domain of $f(x) = x^2$ is *restricted* to only nonnegative real numbers, then the inverse of *f* is a function.

EXAMPLE 4 Find the inverse of a power function

Find the inverse of $f(x) = x^2$, $x \ge 0$. Then graph f and f^{-1} .

Solution

$f(x) = x^2$	Write original function.
$y = x^2$	Replace <i>f</i> (<i>x</i>) with <i>y</i> .
$x = y^2$	Switch <i>x</i> and <i>y</i> .
$\pm \sqrt{x} = y$	Take square roots of each side.

The domain of *f* is restricted to nonnegative values of *x*. So, the range of f^{-1} must also be restricted to nonnegative values, and therefore the inverse is $f^{-1}(x) = \sqrt{x}$. (If the domain was restricted to $x \le 0$, you would choose $f^{-1}(x) = -\sqrt{x}$.)

HORIZONTAL LINE TEST You can use the graph of a function *f* to determine whether the inverse of *f* is a function by applying the *horizontal line test*.

CHECK SOLUTION You can check the

You can check the solution of Example 4 by noting that the graph of $f^{-1}(x) = \sqrt{x}$ is the reflection of the graph of $f(x) = x^2, x \ge 0$, in the line y = x.