

Key Vocabulary
• inverse relation

inverse relation
 inverse function

In Lesson 2.1, you learned that a relation is a pairing of input values with output values. An **inverse relation** interchanges the input and output values of the original relation. This means that the domain and range are also interchanged.

Original relation

x	0	1	2	3	4
у	6	4	2	0	-2
verse	relatio	m			
verse	relatio	n			
verse x	relatio	on 4	2	0	-2

The graph of an inverse relation is a *reflection* of the graph of the original relation. The line of reflection is y = x. To find the inverse of a relation given by an equation in *x* and *y*, switch the roles of *x* and *y* and solve for *y*.

EXAMPLE 1 Find an inverse relation

Find an equation for the inverse of the relation y = 3x - 5.

y = 3x - 5	Write original relation.
x = 3y - 5	Switch <i>x</i> and <i>y</i> .
x + 5 = 3y	Add 5 to each side.
$\frac{1}{3}x + \frac{5}{3} = y$	Solve for <i>y</i> . This is the inverse relation.

In Example 1, both the original relation and the inverse relation happen to be functions. In such cases, the two functions are called **inverse functions**.

