Graphing ACTIVITY Use after Lesson 6.3

6.3 Use Operations with Functions

TEKS a.3, a.5, a.6

How can you use a graphing calculator to perform operations with functions?

EXAMPLE Perform function operations

Let $f(x) = x^2 - 3x + 6$ and g(x) = x - 4. Find f(4) + g(4) and f(g(-2)).

STEP 1 Form sum

Enter $y_1 = x^2 - 3x + 6$ and $y_2 = x - 4$. The sum can be entered as $y_3 = y_1 + y_2$. To do so, press VARS, choose the Y-Vars menu, and select Function.

STEP 3 Form composition

The composition f(g(x)) can be entered as $y_3 = y_1(y_2)$.

STEP 2 Evaluate sum

On the home screen, enter $y_2(4)$ and press **ENTER**. The screen shows that $y_3(4) = 10$, so f(4) + g(4) = 10.

STEP 4 Evaluate composition

On the home screen, enter $y_3(-2)$ and press **ENTER**. The screen shows that $y_3(-2) = 60$, so f(g(-2)) = 60.

PRACTICE

Use a graphing calculator and the functions f and g to find the indicated value.

1.
$$f(x) = x^3 + 5x - 3$$
, $g(x) = -3x^2 - x$: $g(7) + f(7)$ **2.** $f(x) = x^{1/3}$, $g(x) = 9x$: $\frac{f(-8)}{g(-8)}$

3.
$$f(x) = 5x^3 - 3x^2$$
, $g(x) = -2x^2 - 5$; $g(2) - f(2)$

2.
$$f(x) = x^{1/3}, g(x) = 9x: \frac{f(-8)}{g(-8)}$$

4.
$$f(x) = 2x^2 + 7x - 2$$
, $g(x) = x - 6$: $f(g(5))$