COMPOSITION OF FUNCTIONS Another operation that can be performed with two functions is *composition*.

READING

As with subtraction and division of functions, you need to be alert to the order of functions when they are composed. In general, f(g(x)) is not equal to g(f(x)).

KEY CONCEPT For Your Notebook			Notebook
Composition of Functions The composition of a function <i>g</i> with a function <i>f</i> is: h(x) = g(f(x)) The domain of <i>h</i> is the set of all <i>x</i> -values such that <i>x</i> is in the domain of <i>f</i> and <i>f</i> (<i>x</i>) is in the domain of <i>g</i> .	Domain of f	Range of f Output of f f(x) Input of g Domain of g	g(f(x)) Output of g Range of g

TAKS

EXAMPLE 4 TAKS PRACTICE: Multiple Choice

Let $f(x) = 3x - 14$ and $g(x) = x^2 + 5$. What is the value of $g(f(4))$?					
▲ −9	B -1	© 1	D 9		

Solution

To evaluate g(f(4)), you first must find f(4).

$$f(\mathbf{4}) = 3(\mathbf{4}) - 14 = -2$$

Then $g(f(4)) = g(-2) = (-2)^2 + 5 = 4 + 5 = 9$.

So, the value of g(f(4)) is 9.

The correct answer is D. (A) (B) (C) (D)

EXAMPLE 5 Find compositions of functions

Let $f(x) = 4x^{-1}$ and g(x) = 5x - 2. Find the following.

a.
$$f(g(x))$$
 b. $g(f(x))$

c. f(f(x)) **d.** the domain of each composition

Solution

- **a.** $f(g(x)) = f(5x 2) = 4(5x 2)^{-1} = \frac{4}{5x 2}$
- **b.** $g(f(x)) = g(4x^{-1}) = 5(4x^{-1}) 2 = 20x^{-1} 2 = \frac{20}{r} 2$
- **c.** $f(f(x)) = f(4x^{-1}) = 4(4x^{-1})^{-1} = 4(4^{-1}x) = 4^0x = x$
- **d.** The domain of f(g(x)) consists of all real numbers except $x = \frac{2}{5}$ because $g\left(\frac{2}{5}\right) = 0$ is not in the domain of *f*. (Note that $f(0) = \frac{4}{0}$, which is undefined.) The domains of g(f(x)) and f(f(x)) consist of all real numbers except x = 0, again because 0 is not in the domain of *f*.

AVOID ERRORS

You cannot always determine the domain of a composition from its equation. For instance, the domain of f(f(x)) = x appears to be all real numbers, but it is actually all real numbers except zero.