COMPOSITION OF FUNCTIONS Another operation that can be performed with two functions is composition.

KEY CONCEPT
 For Your Notebook

READING

As with subtraction and division of functions, you need to be alert to the order of functions when they are composed. In general, $f(g(x))$ is not equal to $g(f(x))$.

Composition of Functions

The composition of a function g with a function f is:

$$
h(x)=g(f(x))
$$

The domain of h is the set of all x-values such that x is in the domain of f and $f(x)$ is in the domain of g.

EXAMPLE 4 TAKS PRACTICE: Multiple Choice

Let $f(x)=3 x-14$ and $g(x)=x^{2}+5$. What is the value of $g(f(4))$?
(A) -9
(B) -1
(C) 1
(D) 9

Solution

To evaluate $g(f(4))$, you first must find $f(4)$.

$$
f(4)=3(4)-14=-2
$$

Then $g(f(4))=g(-2)=(-2)^{2}+5=4+5=9$.
So, the value of $g(f(4))$ is 9 .

- The correct answer is D. (A) (B) (D)

EXAMPLE 5 Find compositions of functions

Let $f(x)=4 x^{-1}$ and $g(x)=5 x-2$. Find the following.
a. $f(g(x))$
b. $g(f(x))$
c. $f(f(x))$
d. the domain of each composition

Solution

a. $f(g(x))=f(5 x-2)=4(5 x-2)^{-1}=\frac{4}{5 x-2}$
b. $g(f(x))=g\left(4 x^{-1}\right)=5\left(4 x^{-1}\right)-2=20 x^{-1}-2=\frac{20}{x}-2$
c. $f(f(x))=f\left(4 x^{-1}\right)=4\left(4 x^{-1}\right)^{-1}=4\left(4^{-1} x\right)=4^{0} x=x$
d. The domain of $f(g(x))$ consists of all real numbers except $x=\frac{2}{5}$
because $g\left(\frac{2}{5}\right)=0$ is not in the domain of f. (Note that $f(0)=\frac{4}{0}$,
which is undefined.) The domains of $g(f(x))$ and $f(f(x))$ consist of all real numbers except $x=0$, again because 0 is not in the domain of f.

