EXAMPLE 4 Solve an inequality with a variable on both sides

Solve $5 x+2>7 x-4$. Then graph the solution.

$$
\begin{aligned}
5 x+2 & >7 x-4 & & \text { Write original inequality. } \\
-2 x+2 & >-4 & & \text { Subtract } 7 x \text { from each side. } \\
-2 x & >-6 & & \text { Subtract } 2 \text { from each side. } \\
x & <3 & & \text { Divide each side by }-\mathbf{2} \text { and reverse the inequality. }
\end{aligned}
$$

- The solutions are all real numbers less than 3. The graph is shown below.

GuIded Practice for Examples 3 and 4

Solve the inequality. Then graph the solution.
5. $4 x+9<25$
6. $1-3 x \geq-14$
7. $5 x-7 \leq 6 x$
8. $3-x>x-9$

EXAMPLE 5 Solve an "and" compound inequality

Solve $-4<6 x-10 \leq 14$. Then graph the solution.

$$
\begin{aligned}
-4 & <6 x-10 \leq 14 & & \text { Write original inequality. } \\
-4+\mathbf{1 0} & <6 x-10+\mathbf{1 0} \leq 14+\mathbf{1 0} & & \text { Add } \mathbf{1 0} \text { to each expression. } \\
6 & <6 x \leq 24 & & \text { Simplify. } \\
1 & <x \leq 4 & & \text { Divide each expression by } 6 .
\end{aligned}
$$

- The solutions are all real numbers greater than 1 and less than or equal to 4. The graph is shown below.

EXAMPLE 6 Solve an "or" compound inequality

Solve $3 x+5 \leq 11$ or $5 x-7 \geq 23$. Then graph the solution.

Solution

A solution of this compound inequality is a solution of either of its parts.

First Inequality
$3 x+5 \leq 11 \quad$ Write first inequality.
$3 x \leq 6 \quad$ Subtract 5 from each side.
$x \leq 2 \quad$ Divide each side by 3.

Second Inequality

$$
\begin{aligned}
5 x-7 & \geq 23 & & \text { Write second inequality. } \\
5 x & \geq 30 & & \text { Add } 7 \text { to each side. } \\
x & \geq 6 & & \text { Divide each side by } 5 .
\end{aligned}
$$

- The graph is shown below. The solutions are all real numbers less than or equal to 2 or greater than or equal to 6 .

