EXAMPLE 2 Multiply and divide functions

Let $f(x)=6 x$ and $g(x)=x^{3 / 4}$. Find the following.
a. $f(x) \cdot g(x)$
b. $\frac{f(x)}{g(x)}$
c. the domains of $f \cdot g$ and $\frac{f}{g}$

Solution

a. $f(x) \cdot g(x)=(6 x)\left(x^{3 / 4}\right)=6 x^{(1+3 / 4)}=6 x^{7 / 4}$
b. $\frac{f(x)}{g(x)}=\frac{6 x}{x^{3 / 4}}=6 x^{(1-3 / 4)}=6 x^{1 / 4}$
c. The domain of f consists of all real numbers, and the domain of g consists of all nonnegative real numbers. So, the domain of $f \cdot g$ consists of all nonnegative real numbers. Because $g(0)=0$, the domain of $\frac{f}{g}$ is restricted to all positive real numbers.

RHINOS For a white rhino, heart rate r (in beats per minute) and life span s (in minutes) are related to body mass m (in kilograms) by these functions:

$$
r(m)=241 m^{-0.25} \quad s(m)=\left(6 \times 10^{6}\right) m^{0.2}
$$

- Find $r(m) \cdot s(m)$.
- Explain what this product represents.

Solution

STEP 1 Find and simplify $r(m) \cdot s(m)$.

$$
\begin{aligned}
r(m) \cdot s(m) & =241 m^{-0.25}\left[\left(6 \times 10^{6}\right) m^{0.2}\right] & & \text { Write product of } r(m) \text { and } s(m) . \\
& =241\left(6 \times 10^{6}\right) m^{(-0.25+0.2)} & & \text { Product of powers property } \\
& =\left(1446 \times 10^{6}\right) m^{-0.05} & & \text { Simplify. } \\
& =\left(1.446 \times 10^{9}\right) m^{-0.05} & & \text { Use scientific notation. }
\end{aligned}
$$

STEP 2 Interpret $r(m) \cdot s(m)$.
Multiplying heart rate by life span gives the total number of heartbeats for a white rhino over its entire lifetime.

Guided Practice for Examples 1, 2, and 3

Let $f(x)=-2 x^{2 / 3}$ and $g(x)=7 x^{2 / 3}$. Find the following.

1. $f(x)+g(x)$
2. $f(x)-g(x)$
3. the domains of $f+g$ and $f-g$

Let $f(x)=3 x$ and $g(x)=x^{1 / 5}$. Find the following.
4. $f(x) \cdot g(x)$
5. $\frac{f(x)}{g(x)}$
6. the domains of $f \cdot g$ and $\frac{f}{g}$
7. RHINOS Use the result of Example 3 to find a white rhino's number of heartbeats over its lifetime if its body mass is 1.7×10^{5} kilograms.

