6.3 Perform Function Operations

 and CompositionBefore You performed operations with algebraic expressions. You will perform operations with functions. So you can model biological processes, as in Example 3.

Key Vocabulary - power function - composition

In Chapter 5 you learned how to add, subtract, multiply, and divide polynomial functions. These operations can be defined for any number of functions.

KEY CONCEPT

For Your Notebook

Operations on Functions

Let f and g be any two functions. A new function h can be defined by performing any of the four basic operations on f and g.

Operation	Definition	Example: $\boldsymbol{f}(\boldsymbol{x})=\mathbf{5 x}, \boldsymbol{g}(\boldsymbol{x})=\boldsymbol{x}+\mathbf{2}$
Addition	$h(x)=f(x)+g(x)$	$h(x)=5 x+(x+2)=6 x+2$
Subtraction	$h(x)=f(x)-g(x)$	$h(x)=5 x-(x+2)=4 x-2$
Multiplication	$h(x)=f(x) \cdot g(x)$	$h(x)=5 x(x+2)=5 x^{2}+10 x$
Division	$h(x)=\frac{f(x)}{g(x)}$	$h(x)=\frac{5 x}{x+2}$

The domain of h consists of the x-values that are in the domains of both f and g. Additionally, the domain of the quotient does not include x-values for which $g(x)=0$.

POWER FUNCTIONS So far you have studied several types of functions, including linear functions, quadratic functions, and polynomial functions of higher degree. Another common type of function is a power function, which has the form $y=a x^{b}$ where a is a real number and b is a rational number.

EXAMPLE 1 Add and subtract functions

Let $f(x)=4 x^{1 / 2}$ and $g(x)=-9 x^{1 / 2}$. Find the following.
a. $f(x)+g(x)$
b. $f(x)-g(x)$
c. the domains of $f+g$ and $f-g$

Solution

a. $f(x)+g(x)=4 x^{1 / 2}+\left(-9 x^{1 / 2}\right)=[4+(-9)] x^{1 / 2}=-5 x^{1 / 2}$
b. $f(x)-g(x)=4 x^{1 / 2}-\left(-9 x^{1 / 2}\right)=[4-(-9)] x^{1 / 2}=13 x^{1 / 2}$
c. The functions f and g each have the same domain: all nonnegative real numbers. So, the domains of $f+g$ and $f-g$ also consist of all nonnegative real numbers.

