 One balloon contains twice as much water as the other balloon.
a. Solve the formula for the volume of a sphere, $V=\frac{4}{3} \pi r^{3}$, for r.
b. Substitute the expression for r from part (a) into the formula for the surface area of a sphere, $S=4 \pi r^{2}$. Simplify to show that $S=(4 \pi)^{1 / 3}(3 V)^{2 / 3}$.
c. Compare the surface areas of the two water balloons using the formula from part (b).
90. Challenge Substitute different combinations of odd and even positive integers for m and n in the expression $\sqrt[n]{x^{m}}$. If x is not always positive, when is absolute value needed in simplifying the expression?

MIXed REVIEW for TAKS

TAKS PRACTICE at classzone.com

REVIEW

Lesson 2.2;
TAKS Workbook
91. taks Practice Which equation best represents a line parallel to the line shown? TAKS Obj. 7
(A) $-5 x+8 y=14$
(B) $-2 x+4 y=-3$
(C) $-x-4 y=14$
(D) $8 x+5 y=20$

REVIEW

TAKS Workbook
92. TAKS PRACTICE What is the solution of the inequality $-5 \leq-6 x+3 \leq 15$? TAKS Obj. 4
(F) $-3 \leq x \leq \frac{1}{3}$
(G) $-2 \leq x \leq \frac{4}{3}$
(H) $\frac{1}{3} \leq x \leq-3$
(J) $\frac{4}{3} \leq x \leq-2$

QUIZ for Lessons 6.1-6.2

Evaluate the expression without using a calculator. (p. 414)

1. $36^{3 / 2}$
2. $64^{-2 / 3}$
3. $-\left(625^{3 / 4}\right)$
4. $(-32)^{2 / 5}$

Solve the equation. Round your answer to two decimal places when appropriate. (p. 414)
5. $x^{4}=20$
6. $x^{5}=-10$
7. $x^{6}+5=26$
8. $(x+3)^{3}=-16$

Simplify the expression. Assume all variables are positive. (p. 420)
9. $\sqrt[4]{32} \cdot \sqrt[4]{8}$
10. $(\sqrt{10} \cdot \sqrt[3]{10})^{8}$
11. $\left(x^{6} y^{4}\right)^{1 / 8}+2\left(x^{1 / 3} y^{1 / 4}\right)^{2}$
12. $\frac{3 \sqrt{7^{3}}+4 \sqrt{7^{3}}}{\sqrt{7^{5}}}$
13. $\frac{2 \sqrt{x} \cdot \sqrt{x^{3}}}{\sqrt{64 x^{15}}}$
14. $y^{2} \sqrt[5]{64 x^{6}}-6 \sqrt[5]{2 x^{6} y^{10}}$
15. GEOMETRY Find a radical expression for the perimeter of the red triangle inscribed in the square shown to the right. Simplify the expression. (p. 420)

