PROBLEM SOLVING

EXAMPLE 2
on p. 421
for Exs. 83-84
83. BIOLOGY Look back at Example 2 on page 421. Use the model $S=k m^{2 / 3}$ to approximate the surface area of the mammal given its mass.
a. Bat: 32 grams
b. Human: 59 kilograms

84. AIRPLANE VELOCITY The velocity v (in feet per second) of a jet can be approximated by the model

$$
v=8.8 \sqrt{\frac{L}{A}}
$$

where A is the area of the wings (in square feet) and L is the lift (in Newtons). Find the velocity of a jet with a wing area of 5.5×10^{3} square feet and a lift of 1.4×10^{7} Newtons.
TEXAS @Homeffipoblerf

85. PINHOLE CAMERA The optimum diameter d (in millimeters) of the pinhole in a pinhole camera can be modeled by

$$
d=1.9\left[\left(5.5 \times 10^{-4}\right) \ell\right]^{1 / 2}
$$

where ℓ is the length of the camera box (in millimeters). Find the optimum pinhole diameter for a camera box with a length of 10 centimeters.
86. Sill straspones Show that the hypotenuse of an isosceles right triangle with legs of length x is $x \sqrt{2}$.
87. STAR MAGNITUDE The apparent magnitude of a star is a number that indicates how faint the star is in relation to other stars. The expression $\frac{2.512^{m_{1}}}{2.512^{m_{2}}}$ tells how many times fainter a star with magnitude m_{1} is than a star with magnitude m_{2}.
a. How many times fainter is Altair than Vega?
b. How many times fainter is Deneb than Altair?
c. How many times fainter is Deneb than Vega?

Star	Apparent magnitude	Constellation
Vega	0.03	Lyra
Altair	0.77	Aquila
Deneb	1.25	Cygnus

88. PHYSICAL SCIENCE The maximum horizontal distance d that an object can travel when launched at an optimum angle of projection is given by

$$
d=\frac{v_{0} \sqrt{\left(v_{0}\right)^{2}+2 g h_{0}}}{g}
$$

where h_{0} is the object's initial height, v_{0} is its initial speed, and g is the acceleration due to gravity. Simplify the model when $h_{0}=0$.

