SIMPLEST FORM A radical with index *n* is in **simplest form** if the radicand has no perfect *n*th powers as factors and any denominator has been rationalized.

	EXAMPLE 4 Write	radicals in simplest form
Write the expression in simplest form.		
	a. $\sqrt[3]{135} = \sqrt[3]{27 \cdot 5}$	Factor out perfect cube.
	$=\sqrt[3]{27}\cdot\sqrt[3]{5}$	Product property
	$=3\sqrt[3]{5}$	Simplify.
REVIEW RADICALS For help with rationalizing denominators of radical expressions, see p. 266.	b. $\frac{\sqrt[5]{7}}{\sqrt[5]{8}} = \frac{\sqrt[5]{7}}{\sqrt[5]{8}} \cdot \frac{\sqrt[5]{4}}{\sqrt[5]{4}}$	Make denominator a perfect fifth power.
	$=rac{\sqrt[5]{28}}{\sqrt[5]{32}}$	Product property
	$=\frac{\sqrt[5]{28}}{2}$	Simplify.

LIKE RADICALS Radical expressions with the same index and radicand are **like** radicals. To add or subtract like radicals, use the distributive property.

EXAMPLE 5 Add and subtract like radicals and roots

Simplify the expression.

- **a.** $\sqrt[4]{10} + 7\sqrt[4]{10} = (1+7)\sqrt[4]{10} = 8\sqrt[4]{10}$
- **b.** $2(8^{1/5}) + 10(8^{1/5}) = (2+10)(8^{1/5}) = 12(8^{1/5})$ **c.** $\sqrt[3]{54} \sqrt[3]{2} = \sqrt[3]{27} \cdot \sqrt[3]{2} \sqrt[3]{2} = 3\sqrt[3]{2} \sqrt[3]{2} = (3-1)\sqrt[3]{2} = 2\sqrt[3]{2}$

GUIDED PRACTICE	for Examples 3, 4, and 5				
Simplify the expression.					
6. $\sqrt[4]{27} \cdot \sqrt[4]{3}$	7. $\frac{\sqrt[3]{250}}{\sqrt[3]{2}}$	8. $\sqrt[5]{\frac{3}{4}}$	9. $\sqrt[3]{5} + \sqrt[3]{40}$		

VARIABLE EXPRESSIONS The properties of rational exponents and radicals can also be applied to expressions involving variables. Because a variable can be positive, negative, or zero, sometimes absolute value is needed when simplifying a variable expression.

	Rule	Example
When <i>n</i> is odd	$\sqrt[n]{x^n} = x$	$\sqrt[7]{5^7} = 5 \text{ and } \sqrt[7]{(-5)^7} = -5$
When <i>n</i> is even	$\sqrt[n]{x^n} = x $	$\sqrt[4]{3^4} = 3 \text{ and } \sqrt[4]{(-3)^4} = 3$

Absolute value is not needed when all variables are assumed to be positive.