SIMPLEST FORM A radical with index n is in simplest form if the radicand has no perfect nth powers as factors and any denominator has been rationalized.

EXAMPLE 4 Write radicals in simplest form

Write the expression in simplest form.

REVIEW RADICALS
 For help with rationalizing denominators of radical expressions, see p. 266.

a. $\sqrt[3]{135}=\sqrt[3]{27 \cdot 5} \quad$ Factor out perfect cube.

$$
=\sqrt[3]{27} \cdot \sqrt[3]{5} \quad \text { Product property }
$$

$$
=3 \sqrt[3]{5} \quad \text { Simplify }
$$

b. $\begin{aligned} \frac{\sqrt[5]{7}}{\sqrt[5]{8}} & =\frac{\sqrt[5]{7}}{\sqrt[5]{8}} \cdot \frac{\sqrt[5]{4}}{\sqrt[5]{4}} & & \text { Make denominator } \\ & =\frac{\sqrt[5]{28}}{\sqrt[5]{32}} & & \text { Product property }\end{aligned}$
$=\frac{\sqrt[5]{28}}{2} \quad$ Simplify.

LIKE RADICALS Radical expressions with the same index and radicand are like radicals. To add or subtract like radicals, use the distributive property.

EXAMPLE 5 Add and subtract like radicals and roots

Simplify the expression.
a. $\sqrt[4]{10}+7 \sqrt[4]{10}=(1+7) \sqrt[4]{10}=8 \sqrt[4]{10}$
b. $2\left(8^{1 / 5}\right)+10\left(8^{1 / 5}\right)=(2+10)\left(8^{1 / 5}\right)=12\left(8^{1 / 5}\right)$
c. $\sqrt[3]{54}-\sqrt[3]{2}=\sqrt[3]{27} \cdot \sqrt[3]{2}-\sqrt[3]{2}=3 \sqrt[3]{2}-\sqrt[3]{2}=(3-1) \sqrt[3]{2}=2 \sqrt[3]{2}$

Guided Practice for Examples 3, 4, and 5

Simplify the expression.

6. $\sqrt[4]{27} \cdot \sqrt[4]{3}$
7. $\frac{\sqrt[3]{250}}{\sqrt[3]{2}}$
8. $\sqrt[5]{\frac{3}{4}}$
9. $\sqrt[3]{5}+\sqrt[3]{40}$

VARIABLE EXPRESSIONS The properties of rational exponents and radicals can also be applied to expressions involving variables. Because a variable can be positive, negative, or zero, sometimes absolute value is needed when simplifying a variable expression.

	Rule	Example
When \boldsymbol{n} is odd	$\sqrt[n]{x^{n}}=x$	$\sqrt[7]{5^{7}}=5$ and $\sqrt[7]{(-5)^{7}}=-5$
When \boldsymbol{n} is even	$\sqrt[n]{x^{n}}=\|x\|$	$\sqrt[4]{3^{4}}=3$ and $\sqrt[4]{(-3)^{4}}=3$

Absolute value is not needed when all variables are assumed to be positive.

