EXAMPLE 2 Apply properties of exponents

BIOLOGY A mammal's surface area S (in square centimeters) can be approximated by the model $S=\mathrm{km}^{2 / 3}$ where m is the mass (in grams) of the mammal and k is a constant. The values of k for some mammals are shown below. Approximate the surface area of a rabbit that has a mass of 3.4 kilograms (3.4×10^{3} grams).

Mammal	Sheep	Rabbit	Horse	Human	Monkey	Bat
\boldsymbol{k}	8.4	9.75	10.0	11.0	11.8	57.5

Solution

$$
\begin{aligned}
S & =k \mathrm{~km}^{2 / 3} & & \text { Write model. } \\
& =9.75\left(3.4 \times 10^{3}\right)^{2 / 3} & & \text { Substitute } 9.75 \text { for } \boldsymbol{k} \text { and } 3.4 \times 10^{3} \text { for } \mathbf{m} . \\
& =9.75(3.4)^{2 / 3}\left(10^{3}\right)^{2 / 3} & & \text { Power of a product property } \\
& \approx 9.75(2.26)\left(10^{2}\right) & & \text { Power of a power property } \\
& \approx 2200 & & \text { Simplify. }
\end{aligned}
$$

- The rabbit's surface area is about 2200 square centimeters.

GUIDED PRACTICE for Examples 1 and 2

Simplify the expression.

1. $\left(5^{1 / 3} \cdot 7^{1 / 4}\right)^{3}$
2. $2^{3 / 4} \cdot 2^{1 / 2}$
3. $\frac{3}{3^{1 / 4}}$
4. $\left(\frac{20^{1 / 2}}{5^{1 / 2}}\right)^{3}$
5. BIOLOGY Use the information in Example 2 to approximate the surface area of a sheep that has a mass of 95 kilograms (9.5×10^{4} grams).

PROPERTIES OF RADICALS The third and sixth properties on page 420 can be expressed using radical notation when $m=\frac{1}{n}$ for some integer n greater than 1 .

KEY CONCEPT

For Your Notebook

Properties of Radicals
Product property of radicals

$$
\sqrt[n]{a \cdot b}=\sqrt[n]{a} \cdot \sqrt[n]{b}
$$

Quotient property of radicals

$$
\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}, b \neq 0
$$

EXAMPLE 3 Use properties of radicals

Use the properties of radicals to simplify the expression.
a. $\sqrt[3]{12} \cdot \sqrt[3]{18}=\sqrt[3]{12 \cdot 18}=\sqrt[3]{216}=6 \quad$ Product property
b. $\frac{\sqrt[4]{80}}{\sqrt[4]{5}}=\sqrt[4]{\frac{80}{5}}=\sqrt[4]{16}=2$

Quotient property

