6.2 Apply Properties of Rational Exponents

You simplified expressions involving integer exponents. You will simplify expressions involving rational exponents. So you can find velocities, as in Ex. 84.

Key Vocabulary

simplest form of a radical

like radicals

The properties of integer exponents you learned in Lesson 5.1 can also be applied to rational exponents.

KEY CONCEPT

For Your Notebook

Properties of Rational Exponents

Let *a* and *b* be real numbers and let *m* and *n* be rational numbers. The following properties have the same names as those listed on page 330, but now apply to rational exponents as illustrated.

Property	Example
1. $a^m \cdot a^n = a^{m+n}$	$5^{1/2} \cdot 5^{3/2} = 5^{(1/2 + 3/2)} = 5^2 = 25$
2. $(a^m)^n = a^{mn}$	$(3^{5/2})^2 = 3^{(5/2 \cdot 2)} = 3^5 = 243$
3. $(ab)^m = a^m b^m$	$(16 \cdot 9)^{1/2} = 16^{1/2} \cdot 9^{1/2} = 4 \cdot 3 = 12$
4. $a^{-m} = \frac{1}{a^m}, a \neq 0$	$36^{-1/2} = \frac{1}{36^{1/2}} = \frac{1}{6}$
5. $\frac{a^m}{a^n} = a^{m-n}, a \neq 0$	$\frac{4^{5/2}}{4^{1/2}} = 4^{(5/2 - 1/2)} = 4^2 = 16$
6. $\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}, b \neq 0$	$\left(\frac{27}{64}\right)^{1/3} = \frac{27^{1/3}}{64^{1/3}} = \frac{3}{4}$

EXAMPLE 1 Use properties of exponents

Use the properties of rational exponents to simplify the expression.

a. $7^{1/4} \cdot 7^{1/2} = 7^{(1/4 + 1/2)} = 7^{3/4}$ **b.** $(6^{1/2} \cdot 4^{1/3})^2 = (6^{1/2})^2 \cdot (4^{1/3})^2 = 6^{(1/2 \cdot 2)} \cdot 4^{(1/3 \cdot 2)} = 6^1 \cdot 4^{2/3} = 6 \cdot 4^{2/3}$ **c.** $(4^5 \cdot 3^5)^{-1/5} = [(4 \cdot 3)^5]^{-1/5} = (12^5)^{-1/5} = 12^{[5 \cdot (-1/5)]} = 12^{-1} = \frac{1}{12}$ **d.** $\frac{5}{5^{1/3}} = \frac{5^1}{5^{1/3}} = 5^{(1 - 1/3)} = 5^{2/3}$ **e.** $\left(\frac{42^{1/3}}{6^{1/3}}\right)^2 = \left[\left(\frac{42}{6}\right)^{1/3}\right]^2 = (7^{1/3})^2 = 7^{(1/3 \cdot 2)} = 7^{2/3}$