SOLVING INEQUALITIES To solve a linear inequality in one variable, you isolate the variable using transformations that produce equivalent inequalities, which are inequalities that have the same solutions as the original inequality.

KEY CONCEPT	For Your Notebools	
Transformations That Produce Equivalent Inequalities		
Transformation applied to inequality	Original inequality	Equivalent inequality
Add the same number to each side.	$x-7<4$	$x<11$
Subtract the same number from each side.	$x+3 \geq-1$	$x \geq-4$
Multiply each side by the same positive number.	$\frac{1}{2} x>10$	$x>20$
Divide each side by the same positive number.	$5 x \leq 15$	$x \leq 3$
Multiply each side by the same negative number and reverse the inequality.	$-x<17$	$x>-17$
Divide each side by the same negative number and reverse the inequality.	$-9 x \geq 45$	$x \leq-5$

EXAMPLE 3 Solve an inequality with a variable on one side

ANOTHER WAY

For alternative methods for solving the problem in Example 3, turn to page 48 for the Problem Solving Workshop.

FAIR You have $\$ 50$ to spend at a county fair. You spend $\$ 20$ for admission. You want to play a game that costs $\$ 1.50$. Describe the possible numbers of times you can play the game.

Solution

STEP 1 Write a verbal model. Then write an inequality.

Admission fee (dollars)	$+$	$\begin{gathered} \text { Cost per } \\ \text { game } \\ \text { (dollars/game) } \end{gathered}$	-	Number of games (games)	\leq	Amount you can spend (dollars)
\checkmark				\checkmark		\checkmark
20	+	1.50	-	g	\leq	50

STEP 2 Solve the inequality.

$$
\begin{aligned}
20+1.5 g \leq 50 & \text { Write inequality. } \\
1.5 g \leq 30 & \text { Subtract } 20 \text { from each side. } \\
g \leq 20 & \text { Divide each side by } 1.5 .
\end{aligned}
$$

You can play the game 20 times or fewer.

[^0]
[^0]: AnimatedAlgebra

