SOLVING INEQUALITIES To solve a linear inequality in one variable, you isolate the variable using transformations that produce **equivalent inequalities**, which are inequalities that have the same solutions as the original inequality.

KEY CONCEPT	For Your Notebook	
Transformations That Produce Equivalent Inequalities		
Transformation applied to inequality	Original inequality	Equivalent inequality
Add the same number to each side.	x - 7 < 4	<i>x</i> < 11
Subtract the same number from each side.	$x + 3 \ge -1$	$x \ge -4$
Multiply each side by the same <i>positive</i> number.	$\frac{1}{2}x > 10$	<i>x</i> > 20
Divide each side by the same <i>positive</i> number.	5 <i>x</i> ≤ 15	$x \leq 3$
Multiply each side by the same <i>negative</i> number and <i>reverse</i> the inequality.	- <i>x</i> < 17	<i>x</i> > -17
Divide each side by the same <i>negative</i> number and <i>reverse</i> the inequality.	$-9x \ge 45$	$x \le -5$

EXAMPLE 3 Solve an inequality with a variable on one side

FAIR You have \$50 to spend at a county fair. You spend \$20 for admission. You want to play a game that costs \$1.50. Describe the possible numbers of times you can play the game.

ANOTHER WAY

For alternative methods for solving the problem in Example 3, turn to page 48 for the **Problem Solving Workshop**.