64. WATER RATE A *weir* is a dam that is built across a river to regulate the flow of water. The flow rate Q (in cubic feet per second) can be calculated using the formula $Q = 3.367 \ell h^{3/2}$ where ℓ is the length (in feet) of the bottom of the spillway and h is the depth (in feet) of the water on the spillway. Determine the flow rate of a weir with a spillway that is 20 feet long and has a water depth of 5 feet.

65. ACCENT SOLUTION ACCENT ON SET OF SOLUTION OF SOLUTIONO OF SOLUTIONO O

Name	Tetrahedron	Octahedron	Dodecahedron	Icosahedron
	500	8	572	5 × 20 \$
Number of faces	4	8	12	20
Volume formula	$V = 0.118x^3$	$V = 0.471x^3$	$V = 7.663x^3$	$V = 2.182x^3$

- a. Find the volume of a cube with an edge length of 16 millimeters.
- **b.** Find the edge length *x* for each of the polyhedra shown in the table.
- **c.** Does the polyhedron with the greatest number of faces have the smallest edge length? *Explain*.
- **66. CHALLENGE** The mass of the particles that a river can transport is proportional to the sixth power of the speed of the river. A certain river normally flows at a speed of 1 meter per second. What must its speed be in order to transport particles that are twice as massive as usual? 10 times as massive? 100 times as massive?

