EXAMPLE 4

on p. 416 for Exs. 48–58 **ERROR ANALYSIS** *Describe* and correct the error in solving the equation.

$$x^{3} = 27$$

$$x = \sqrt[3]{27}$$

$$x = 9$$

49.

$$x^{4} = 81$$

$$x = \sqrt[4]{81}$$

$$x = 3$$

SOLVING EQUATIONS Solve the equation. Round the result to two decimal places when appropriate.

50.
$$x^3 = 125$$

51.
$$5x^3 = 1080$$

52.
$$x^6 + 36 = 100$$

53.
$$(x-5)^4 = 256$$

54.
$$x^5 = -48$$

55.
$$7x^4 = 56$$

56.
$$x^3 + 40 = 25$$

57.
$$(x+10)^5=70$$

58.
$$x^6 - 34 = 181$$

- **59. CHALLENGE** The general shape of the graph of $y = x^n$, where n is a positive *even* integer, is shown in red.
 - **a.** *Explain* how the graph justifies the results in the Key Concept box on page 414 when *n* is a positive *even* integer.
 - **b.** Draw a similar graph that justifies the results in the Key Concept box when *n* is a positive *odd* integer.

PROBLEM SOLVING

tenth.

EXAMPLE 5

on p. 416 for Exs. 60–65 **60. SHOT PUT** The shot used in men's shot put has a volume of about 905 cubic centimeters. Find the radius of the shot. (*Hint*: Use the formula $V = \frac{4}{3}\pi r^3$ for the volume of a sphere.)

TEXAS @Homfortmoblerfosophibleheksobtinlasszonetomszone.com

61. BOWLING A bowling ball has a surface area of about 232 square inches. Find the radius of the bowling ball. (*Hint:* Use the formula $S = 4\pi r^2$ for the surface area of a sphere.)

TEXAS @Homeor problem of with the helpotating starting starting starting and comments of the comment of the com

62. INFLATION If the average price of an item increases from p_1 to p_2 over a period of n years, the annual rate of inflation r (expressed as a decimal) is given by $r = \left(\frac{p_2}{p_1}\right)^{1/n} - 1$. Find the rate of inflation for each item in the table. Write each answer as a percent rounded to the nearest

Item	Price in 1950	Price in 1990
Butter (lb)	\$.7420	\$2.195
Chicken (lb)	\$.4430	\$1.087
Eggs (dozen)	\$.6710	\$1.356
Sugar (lb)	\$.0936	\$.4560

MULTI-STEP PROBLEM The power p (in horsepower) used by a fan with rotational speed s (in revolutions per minute) can be modeled by the formula $p = ks^3$ for some constant k. A certain fan uses 1.2 horsepower when its speed is 1700 revolutions per minute. First find the value of k for this fan. Then find the speed of the fan if it uses 1.5 horsepower.