on p. 416
for Exs. 48-58

ERROR ANALYSIS Describe and correct the error in solving the equation.
48.

$$
\begin{aligned}
x^{3} & =27 \\
x & =\sqrt[3]{27} \\
x & =9
\end{aligned}
$$

49.

$$
\begin{aligned}
x^{4} & =81 \\
x & =\sqrt[4]{81} \\
x & =3
\end{aligned}
$$

SOLVING EQUATIONS Solve the equation. Round the result to two decimal places when appropriate.
50. $x^{3}=125$
51. $5 x^{3}=1080$
52. $x^{6}+36=100$
53. $(x-5)^{4}=256$
54. $x^{5}=-48$
55. $7 x^{4}=56$
56. $x^{3}+40=25$
57. $(x+10)^{5}=70$
58. $x^{6}-34=181$
59. ChALLENGE The general shape of the graph of $y=x^{n}$, where n is a positive even integer, is shown in red.
a. Explain how the graph justifies the results in the Key Concept box on page 414 when n is a positive even integer.
b. Draw a similar graph that justifies the results in the Key Concept box when n is a positive odd integer.

PROBLEM SOLVING

EXAMPLE 5

on p. 416
for Exs. 60-65
60. SHOT PUT The shot used in men's shot put has a volume of about 905 cubic centimeters. Find the radius of the shot. (Hint: Use the formula $V=\frac{4}{3} \pi r^{3}$ for the volume of a sphere.)

61. BOWLING A bowling ball has a surface area of about 232 square inches. Find the radius of the bowling ball. (Hint: Use the formula $S=4 \pi r^{2}$ for the surface area of a sphere.)

62. INFLATION If the average price of an item increases from p_{1} to p_{2} over a period of n years, the annual rate of inflation r (expressed as a decimal) is given by $r=\left(\frac{p_{2}}{p_{1}}\right)^{1 / n}-1$. Find the rate of inflation for each item in the table. Write each answer as a percent rounded to the nearest tenth.

Item	Price in 1950	Price in 1990
Butter (lb)	$\$.7420$	$\$ 2.195$
Chicken (lb)	$\$.4430$	$\$ 1.087$
Eggs (dozen)	$\$.6710$	$\$ 1.356$
Sugar (lb)	$\$.0936$	$\$.4560$

63. MULTI-STEP PROBLEM The power p (in horsepower) used by a fan with rotational speed s (in revolutions per minute) can be modeled by the formula $p=k s^{3}$ for some constant k. A certain fan uses 1.2 horsepower when its speed is 1700 revolutions per minute. First find the value of k for this fan. Then find the speed of the fan if it uses 1.5 horsepower.
