EXAMPLE 4 Solve equations using *n*th roots

Solve the equation.

a.
$$4x^5 = 128$$

$$x^5 = 32$$
 Divide each side by 4.

$$x = \sqrt[5]{32}$$
 Take fifth root of each side.

$$x = 2$$
 Simplify.

b.
$$(x-3)^4 = 21$$

AVOID ERRORS

When *n* is even and a > 0, be sure to consider both the positive and negative nth roots of a.

$$x - 3 = \pm \sqrt[4]{21}$$

$$x = \pm \sqrt[4]{21} + 3$$

$$x = \sqrt[4]{21} + 3$$
 or $x = -\sqrt[4]{21} + 3$ Write solutions separately.

$$x \approx 5.14$$
 or $x \approx 0.86$

Take fourth roots of each side.

Add 3 to each side.

Use a calculator.

EXAMPLE 5 **Use** *n***th roots in problem solving**

BIOLOGY A study determined that the weight w (in grams) of coral cod near Palawan Island, Philippines, can be approximated using the model

$$w = 0.0167 \ell^3$$

where ℓ is the coral cod's length (in centimeters). Estimate the length of a coral cod that weighs 200 grams.

Solution

$$w = 0.0167 \ell^3$$
 Write model for weight.

200 =
$$0.0167\ell^3$$
 Substitute 200 for w.

$$11,976 \approx \ell^3$$
 Divide each side by 0.0167.

$$\sqrt[3]{11,976} \approx \ell$$
 Take cube root of each side.

$$22.9 \approx \ell$$
 Use a calculator.

A coral cod that weighs 200 grams is about 23 centimeters long.

GUIDED PRACTICE for Examples 4 and 5

Solve the equation. Round the result to two decimal places when appropriate.

13.
$$x^3 = 64$$

14.
$$\frac{1}{2}x^5 = 512$$

15.
$$3x^2 = 108$$

16.
$$\frac{1}{4}x^3 = 2$$

17.
$$(x-2)^3 = -14$$
 18. $(x+5)^4 = 16$

18.
$$(x+5)^4=16$$

- 19. WHAT IF? Use the information from Example 5 to estimate the length of a coral cod that has the given weight.
 - **a.** 275 grams
- **b.** 340 grams
- **c.** 450 grams