6.1 Evaluate *n*th Roots and Use Rational Exponents

текз а.1, 2А.2.А

You evaluated square roots and used properties of exponents. You will evaluate *n*th roots and study rational exponents. So you can find the radius of a spherical object, as in Ex. 60.

Key Vocabulary

- *n*th root of *a*
- index of a radical

You can extend the concept of a square root to other types of roots. For example, 2 is a cube root of 8 because $2^3 = 8$. In general, for an integer *n* greater than 1, if $b^n = a$, then *b* is an *n***th root of** *a*. An *n*th root of *a* is written as $\sqrt[n]{a}$ where *n* is the **index** of the radical.

You can also write an *n*th root of *a* as a power of *a*. If you assume the power of a power property applies to rational exponents, then the following is true:

 $(a^{1/2})^2 = a^{(1/2) \cdot 2} = a^1 = a$ $(a^{1/3})^3 = a^{(1/3) \cdot 3} = a^1 = a$ $(a^{1/4})^4 = a^{(1/4) \cdot 4} = a^1 = a$

Because $a^{1/2}$ is a number whose square is a, you can write $\sqrt{a} = a^{1/2}$. Similarly, $\sqrt[3]{a} = a^{1/3}$ and $\sqrt[4]{a} = a^{1/4}$. In general, $\sqrt[n]{a} = a^{1/n}$ for any integer n greater than 1.

111	KEY CONCEPT	For Your Notebook
1000	Real <i>n</i> th Roots of <i>a</i>	
2000	Let <i>n</i> be an integer $(n > 1)$ and let <i>a</i> be a real number.	
222	<i>n</i> is an even integer.	<i>n</i> is an odd integer.
1223	a < 0 No real <i>n</i> th roots.	$a < 0$ One real <i>n</i> th root: $\sqrt[n]{a} = a^{1/n}$
100	$a = 0$ One real <i>n</i> th root: $\sqrt[n]{0} = 0$	$a = 0$ One real <i>n</i> th root: $\sqrt[n]{0} = 0$
999	$a > 0$ Two real <i>n</i> th roots: $\pm \sqrt[n]{a} = \pm a^{1/n}$	$a > 0$ One real <i>n</i> th root: $\sqrt[n]{a} = a^{1/n}$

EXAMPLE 1 Find *n*th roots

Find the indicated real *n*th root(s) of *a*.

a. *n* = 3, *a* = −216

b. *n* = 4, *a* = 81

Solution

- **a.** Because n = 3 is odd and a = -216 < 0, -216 has one real cube root. Because $(-6)^3 = -216$, you can write $\sqrt[3]{-216} = -6$ or $(-216)^{1/3} = -6$.
- **b.** Because n = 4 is even and a = 81 > 0, 81 has two real fourth roots. Because $3^4 = 81$ and $(-3)^4 = 81$, you can write $\pm \sqrt[4]{81} = \pm 3$ or $\pm 81^{1/4} = \pm 3$.