1.6 Solve Linear equations. Before You solved linear equations. Now You will solve linear inequalities. Why? So you can describe temperature ranges, as in Ex. 54.

Key Vocabulary

linear inequality

- compound inequality
- equivalent inequalities

A **linear inequality** in one variable can be written in one of the following forms, where *a* and *b* are real numbers and $a \neq 0$:

ax + b < 0 ax + b > 0 $ax + b \le 0$ $ax + b \ge 0$

A **solution** of an inequality in one variable is a value that, when substituted for the variable, results in a true statement. The **graph** of an inequality in one variable consists of all points on a number line that represent solutions.

EXAMPLE 1 Graph simple inequalities

a. Graph x < 2.

a. Graph -1 < x < 2.

b. Graph $x \ge -1$.

The solutions are all real numbers less than 2.

An open dot is used in the graph to indicate 2 is *not* a solution.

- 1	1			1	-	1	
+	1	1			-		-
-3	-2	-1	0	1	2	3	

 $rac{1}{2}$

b. Graph $x \le -2$ or x > 1.

The solutions are all real numbers greater than or equal to -1.

A solid dot is used in the graph to indicate -1 *is* a solution.

COMPOUND INEQUALITIES A **compound inequality** consists of two simple inequalities joined by "and" or "or."

EXAMPLE 2) Graph compound inequalities

READ INEQUALITIES The compound inequality -1 < x < 2 is another way of writing "x > -1 and x < 2."

-	a orapii i to t							
2 is iting	The solutions are all real numbers that are greater than −1 and less than 2.		that are less than	The solutions are all real numbers that are less than or equal to -2 or greater than 1.				
	< ⊕ -3 -2 -1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
~	GUIDED PRACTICE	for Examples 1 and 2						
	Graph the inequality.							
	1	0	3. $-3 \le x \le 1$	4. $x < 1$ or $x > 2$				
	1. $x > -5$	2. $x \le 3$	$35 \le \lambda < 1$	4. $x < 1 \text{ of } x \ge 2$				