1.6 Solve Linear Inequalities
 a.2, a.5,

A.7.A, A.7.B

Before You solved linear equations. You will solve linear inequalities. So you can describe temperature ranges, as in Ex. 54.

Key Vocabulary

- linear inequality
- compound inequality
- equivalent inequalities

A linear inequality in one variable can be written in one of the following forms, where a and b are real numbers and $a \neq 0$:

$$
a x+b<0 \quad a x+b>0 \quad a x+b \leq 0 \quad a x+b \geq 0
$$

A solution of an inequality in one variable is a value that, when substituted for the variable, results in a true statement. The graph of an inequality in one variable consists of all points on a number line that represent solutions.

EXAMPLE 1 Graph simple inequalities

a. Graph $\boldsymbol{x}<\mathbf{2}$.

The solutions are all real numbers less than 2.

An open dot is used in the graph to indicate 2 is not a solution.

b. Graph $x \geq-1$.

The solutions are all real numbers greater than or equal to -1 .

A solid dot is used in the graph to indicate -1 is a solution.

COMPOUND INEQUALITIES A compound inequality consists of two simple inequalities joined by "and" or "or."

EXAMPLE 2 Graph compound inequalities

READ INEQUALITIES

The compound inequality $-1<x<2$ is another way of writing " $x>-1$ and $x<2$."
a. Graph $-1<x<2$.

The solutions are all real numbers that are greater than -1 and less than 2.

b. Graph $\boldsymbol{x} \leq \mathbf{- 2}$ or $\boldsymbol{x}>1$.

The solutions are all real numbers that are less than or equal to -2 or greater than 1 .

Guided Practice for Examples 1 and 2

Graph the inequality.

1. $x>-5$
2. $x \leq 3$
3. $-3 \leq x<1$
4. $x<1$ or $x \geq 2$
