CHAPTER TEST

Simplify the expression. Tell which properties of exponents you used.

1.
$$x^3 \cdot x^2 \cdot x^{-4}$$
 2. $(2x^{-2}y^3)^{-5}$ **3.** $\left(\frac{x^{-4}}{y^2}\right)^{-2}$ **4.** $\frac{3(xy)^3}{27x - 5y^3}$

Graph the polynomial function.

5.
$$f(x) = -x^3$$

6. $f(x) = x^4 - 2x^2 - 5x + 1$
7. $f(x) = x^5 - x^4 - 9$

Perform the indicated operation.

8.
$$(2x^3 + 5x^2 - 7x + 4) + (x^3 - 3x^2 - 4x)$$
9. $(3x^3 - 4x^2 + 3x - 5) - (x^2 + 4x - 8)$ 10. $(3x - 2)(x^2 + 4x - 7)$ 11. $(3x - 5)^3$ 12. $(3x^3 - 14x^2 + 16x - 22) \div (x - 4)$ 13. $(6x^4 + 7x^2 + 4x - 17) \div (3x^2 - 3x + 2)$

Factor the polynomial completely.

14.
$$8x^3 + 27$$
 15. $x^4 + 5x^2 - 6$ **16.** $x^3 - 3x^2 - 4x + 12$

Find all real zeros of the function.

17.
$$f(x) = x^3 + x^2 - 22x - 40$$

18. $f(x) = 4x^4 - 8x^3 - 19x^2 + 23x - 6$

Write a polynomial function *f* of least degree that has rational coefficients, a leading coefficient of 1, and the given zeros.

19. -1, 3, 4 **20.** 6, 2*i* **21.** -3, -1,
$$1 - \sqrt{5}$$
 22. $1 + 3i$, $4 + \sqrt{10}$

Use a graphing calculator to graph the function. Identify the *x*-intercepts and the points where the local maximums and local minimums occur.

23.
$$f(x) = x^3 - 5x^2 + 3x + 4$$

24. $f(x) = x^4 + 3x^3 - x^2 - 6x + 2$

Use finite differences and a system of equations to find a polynomial function that fits the data in the table.

25.	x	1	2	3	4	5	6	26.	x	1	2	3	4	5	6
	f (x)	3	1	1	3	7	13		f (x)	0	-7	-4	20	80	185

- 27. **GROSS DOMESTIC PRODUCT** In 2003, the gross domestic product (GDP) of the United States was about 1.099×10^{13} dollars. The population of the U.S. in 2003 was about 2.91×10^8 . What was the per capita GDP in 2003?
- **28. TELEVISION** From 1980 to 2002, the number T (in millions) of households in the United States with televisions and the percent P of those households with VCRs can be modeled by

T = 1.22x + 76.9 and $P = -0.205x^2 + 8.36x + 1.98$

where *x* is the number of years since 1980. Write a polynomial model for the total number of U.S. households with both televisions and VCRs.

29. GEOMETRY A rectangular prism has edges of lengths x, x + 2, and 2x - 3 inches. The volume of the prism is 1040 cubic inches. Write a polynomial equation that models the prism's volume. What are the prism's dimensions?