CHAPTER TEST

Simplify the expression. Tell which properties of exponents you used.

1. $x^{3} \cdot x^{2} \cdot x^{-4}$
2. $\left(2 x^{-2} y^{3}\right)^{-5}$
3. $\left(\frac{x^{-4}}{y^{2}}\right)^{-2}$
4. $\frac{3(x y)^{3}}{27 x-5 y^{3}}$

Graph the polynomial function.
5. $f(x)=-x^{3}$
6. $f(x)=x^{4}-2 x^{2}-5 x+1$
7. $f(x)=x^{5}-x^{4}-9$

Perform the indicated operation.

8. $\left(2 x^{3}+5 x^{2}-7 x+4\right)+\left(x^{3}-3 x^{2}-4 x\right)$
9. $(3 x-2)\left(x^{2}+4 x-7\right)$
10. $\left(3 x^{3}-14 x^{2}+16 x-22\right) \div(x-4)$
11. $\left(3 x^{3}-4 x^{2}+3 x-5\right)-\left(x^{2}+4 x-8\right)$
12. $(3 x-5)^{3}$
13. $\left(6 x^{4}+7 x^{2}+4 x-17\right) \div\left(3 x^{2}-3 x+2\right)$

Factor the polynomial completely.
14. $8 x^{3}+27$
15. $x^{4}+5 x^{2}-6$
16. $x^{3}-3 x^{2}-4 x+12$

Find all real zeros of the function.
17. $f(x)=x^{3}+x^{2}-22 x-40$
18. $f(x)=4 x^{4}-8 x^{3}-19 x^{2}+23 x-6$

Write a polynomial function f of least degree that has rational coefficients, a leading coefficient of 1 , and the given zeros.
19. $-1,3,4$
20. $6,2 i$
21. $-3,-1,1-\sqrt{5}$
22. $1+3 i, 4+\sqrt{10}$

Use a graphing calculator to graph the function. Identify the x-intercepts and the points where the local maximums and local minimums occur.
23. $f(x)=x^{3}-5 x^{2}+3 x+4$
24. $f(x)=x^{4}+3 x^{3}-x^{2}-6 x+2$

Use finite differences and a system of equations to find a polynomial function that fits the data in the table.
25.

x	1	2	3	4	5	6
$f(x)$	3	1	1	3	7	13

26.

x	1	2	3	4	5	6
$f(x)$	0	-7	-4	20	80	185

27. GROSS DOMESTIC PRODUCT In 2003, the gross domestic product (GDP) of the United States was about 1.099×10^{13} dollars. The population of the U.S. in 2003 was about 2.91×10^{8}. What was the per capita GDP in 2003 ?
28. TELEVISION From 1980 to 2002, the number T (in millions) of households in the United States with televisions and the percent P of those households with VCRs can be modeled by

$$
T=1.22 x+76.9 \quad \text { and } \quad P=-0.205 x^{2}+8.36 x+1.98
$$

where x is the number of years since 1980. Write a polynomial model for the total number of U.S. households with both televisions and VCRs.
29. (가 GEOMETRY A rectangular prism has edges of lengths $x, x+2$, and $2 x-3$ inches. The volume of the prism is 1040 cubic inches. Write a polynomial equation that models the prism's volume. What are the prism's dimensions?

