CHAPTER REVIEW

5.8

EXAMPLE 2

on p. 388 for Exs. 39-40

Analyze Graphs of Polynomial Functions

pp. 387-392

EXAMPLE

Graph the function $f(x) = x^3 - 4x + 2$. Identify the *x*-intercepts and the points where the local maximums and local minimums occur.

Use a graphing calculator to graph the function.

Notice that the graph has three *x*-intercepts and two turning points. You can use the graphing calculator's zero, maximum, and minimum features to approximate the coordinates of the points.

The *x*-intercepts of the graph are about -2.21, 0.54, and 1.68. The function has a local maximum at (-1.15, 5.08) and a local minimum at (1.15, -1.08).

EXERCISES

Use a graphing calculator to graph the function. Identify the x-intercepts and the points where the local maximums and local minimums occur.

39. $f(x) = -2x^3 - 3x^2 - 1$

40. $f(x) = x^4 + 3x^3 - x^2 - 8x + 2$

Solve the system. The solution is (3, -1, -1), so $f(x) = 3x^2 - x - 1$.

E

EXAMPLE 3 on p. 395 for Ex. 41

E			
.			

41. Use finite differences to find a polynomial function that fits the data.

x	1	2	3	4	5	6
f (x)	-6	-21	-40	-57	-66	-61