CHAPTER REVIEW

5.8 Analyze Graphs of Polynomial Functions

EXAMPLE

Graph the function $f(x)=x^{3}-4 x+2$. Identify the x-intercepts and the points where the local maximums and local minimums occur.

Use a graphing calculator to graph the function.
Notice that the graph has three x-intercepts and two turning points. You can use the graphing calculator's zero, maximum, and minimum features to approximate the coordinates of the points.

The x-intercepts of the graph are about $-2.21,0.54$,

$X=-1.154699 \quad Y=5.079201$

EXAMPLE 2
on p. 388 for Exs. 39-40 and 1.68. The function has a local maximum at $(-1.15,5.08)$ and a local minimum at $(1.15,-1.08)$.

EXERCISES

Use a graphing calculator to graph the function. Identify the x-intercepts and the points where the local maximums and local minimums occur.
39. $f(x)=-2 x^{3}-3 x^{2}-1$
40. $f(x)=x^{4}+3 x^{3}-x^{2}-8 x+2$

EXAMPLE

Use finite differences and a system of equations to find a polynomial function that fits the data.

x	1	2	3	4	5	6
$f(x)$	1	9	23	43	69	101

$f(1)$	$f(2)$	$f(3)$	$f(4)$	$f(5)$	$f(6)$
Write function values for					
equally-spaced x-values.					

Because the second-order differences are constant, the data can be represented by a function of the form $f(x)=a x^{2}+b x+c$. By substituting the first 3 data points into the function, you obtain a system of 3 linear equations in 3 variables.

$$
\begin{aligned}
& a(1)^{2}+b(1)+c=1 \\
& a(2)^{2}+b(2)+c=9 \\
& a(3)^{2}+b(3)+c=23
\end{aligned} \quad \Rightarrow \begin{aligned}
a+b+c & =1 \\
4 a+2 b+c & =9 \\
9 a+3 b+c & =23
\end{aligned}
$$

Solve the system. The solution is $(3,-1,-1)$, so $f(x)=3 x^{2}-x-1$.

EXERCISES

EXAMPLE 3
on p. 395
for Ex. 41
41. Use finite differences to find a polynomial function that fits the data.

x	1	2	3	4	5	6
$f(x)$	-6	-21	-40	-57	-66	-61

