5.6 Find Rational Zeros

EXAMPLE

Find all real zeros of $f(x)=x^{3}+6 x^{2}+5 x-12$.
The leading coefficient is 1 and the constant term is -12 .
Possible rational zeros: $x= \pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{3}{1}, \pm \frac{4}{1}, \pm \frac{6}{1}, \pm \frac{12}{1}$
Test these zeros using synthetic division. Test $x=1$:

You can write $f(x)=(x-1)\left(x^{2}+7 x+12\right)$. Factor the trinomial.

$$
f(x)=(x-1)\left(x^{2}+7 x+12\right)=(x-1)(x+3)(x+4)
$$

The zeros of f are $1,-3$, and -4 .

EXAMPLES

2 and 3
on pp. 371-372
for Exs. 33-34

EXERCISES

Find all real zeros of the function.
33. $f(x)=x^{3}-4 x^{2}-11 x+30$
34. $f(x)=2 x^{4}-x^{3}-42 x^{2}+16 x+160$

5.7 Apply the Fundamental Theorem of Algebra

EXAMPLE

Write a polynomial function f of least degree that has rational coefficients, a leading coefficient of 1 , and -4 and $5+\sqrt{2}$ as zeros.
Because $5+\sqrt{2}$ is a zero, $5-\sqrt{2}$ must also be a zero.

$$
\begin{aligned}
f(x) & =(x+4)[x-(5+\sqrt{2})][x-(5-\sqrt{2})] & & \text { Write } f(x) \text { in factored form. } \\
& =(x+4)[(x-5)-\sqrt{2}][(x-5)+\sqrt{2}] & & \text { Regroup terms. } \\
& =(x+4)\left[(x-5)^{2}-2\right] & & \text { Multiply. } \\
& =x^{3}-6 x^{2}-17 x+92 & & \text { Multiply. }
\end{aligned}
$$

EXERCISES

EXAMPLES

3 and 6
on pp. $381-383$
for Exs. 35-38

Write a polynomial function f of least degree that has rational coefficients, a leading coefficient of 1 , and the given zeros.
35. $-4,1,5$
36. $-1,-1,6,3 i$
37. $2,7,3-\sqrt{5}$
38. ECONOMICS For the 15 years that a computer store has been open, its annual revenue R (in millions of dollars) can be modeled by

$$
R=-0.0040 t^{4}+0.088 t^{3}-0.36 t^{2}-0.55 t+5.8
$$

where t is the number of years since the store opened. In what year was the revenue first greater than $\$ 7$ million?

