REVIEW KEY VOCABULARY

- scientific notation, p. 331
- polynomial, p. 337
- polynomial function, p. 337
- leading coefficient, p. 337
- degree, p. 337
- constant term, p. 337
- standard form of a polynomial function, p. 337
- synthetic substitution, p. 338
- end behavior, p. 339
- factored completely, p. 353
- factor by grouping, p. 354
- quadratic form, p. 355
- Multi-Language Glossary
- Vocabulary practice
- polynomial long division, p. 362
- synthetic division, p. 363
- repeated solution, p. 379
- local maximum, p. 388
- local minimum, p. 388
- finite differences, p. 393

VOCABULARY EXERCISES

1. Copy and complete: At each of its turning points, the graph of a polynomial function has a(n) \qquad or a(n) \qquad
2. WRITING Explain how you can tell whether a solution of a polynomial equation is a repeated solution when the equation is written in factored form.
3. WRITING Explain how you can tell whether a number is expressed in scientific notation.
4. Let f be a fourth-degree polynomial function with four distinct real zeros. How many turning points does the graph of f have?

REVIEW EXAMPLES AND EXERCISES

Use the review examples and exercises below to check your understanding of the concepts you have learned in each lesson of Chapter 5.

5.1 Use Properties of Exponents

EXAMPLE

Simplify the expression.

$$
\begin{aligned}
\left(x^{2} y^{3}\right)^{3} x^{4} & =\left(x^{2}\right)^{3}\left(y^{3}\right)^{3} x^{4} & & \text { Power of a product property } \\
& =x^{6} y^{9} x^{4} & & \text { Power of a power property } \\
& =x^{6+4} y^{9} & & \text { Product of powers property } \\
& =x^{10} y^{9} & & \text { Simplify exponent. }
\end{aligned}
$$

EXERCISES

EXAMPLES
$1,2,3$, and 4
on pp. $330-332$
for Exs. 5-12

Evaluate or simplify the expression. Tell which properties of exponents you used.

5. $2^{2} \cdot 2^{5}$
6. $\left(3^{2}\right)^{-3}\left(3^{3}\right)$
7. $\left(x^{-2} y^{5}\right)^{2}$
8. $\left(3 x^{4} y^{-2}\right)^{-3}$
9. $\left(\frac{3}{4}\right)^{-2}$
10. $\frac{8 \times 10^{7}}{2 \times 10^{3}}$
11. $\left(\frac{x^{2}}{y^{-2}}\right)^{-4}$
12. $\frac{2 x^{-6} y^{5}}{16 x^{3} y^{-2}}$
