EXAMPLE 3 Identify properties of real numbers

Identify the property that the statement illustrates.
a. $7+4=4+7$
b. $13 \cdot \frac{1}{13}=1$

Solution

a. Commutative property of addition
b. Inverse property of multiplication

KEY CONCEPT

For Your Notebook

Defining Subtraction and Division

Subtraction is defined as adding the opposite. The opposite, or additive inverse, of any number b is $-b$. If b is positive, then $-b$ is negative. If b is negative, then $-b$ is positive.

$$
a-b=a+(-b) \quad \text { Definition of subtraction }
$$

Division is defined as multiplying by the reciprocal. The reciprocal, or multiplicative inverse, of any nonzero number b is $\frac{1}{b}$.

$$
a \div b=a \cdot \frac{1}{b}, b \neq 0 \quad \text { Definition of division }
$$

EXAMPLE 4 Use properties and definitions of operations

Use properties and definitions of operations to show that $a+(2-a)=2$. Justify each step.

Solution

$$
\begin{aligned}
a+(2-a) & =a+[2+(-a)] & & \text { Definition of subtraction } \\
& =a+[(-a)+2] & & \text { Commutative property of addition } \\
& =[a+(-a)]+2 & & \text { Associative property of addition } \\
& =0+2 & & \text { Inverse property of addition } \\
& =2 & & \text { Identity property of addition }
\end{aligned}
$$

GUIDED PrACTICE for Examples 3 and 4

Identify the property that the statement illustrates.
3. $(2 \cdot 3) \cdot 9=2 \cdot(3 \cdot 9)$
4. $15+0=15$
5. $4(5+25)=4(5)+4(25)$
6. $1 \cdot 500=500$

Use properties and definitions of operations to show that the statement is true. Justify each step.
7. $b \cdot(4 \div b)=4$ when $b \neq 0$
8. $3 x+(6+4 x)=7 x+6$

