EXAMPLE 3 Identify properties of real numbers

Identify the property that the statement illustrates.

a.
$$7 + 4 = 4 + 7$$

Solution

a. Commutative property of addition

b.
$$13 \cdot \frac{1}{13} = 1$$

b. Inverse property of multiplication

KEY CONCEPT

For Your Notebook

Defining Subtraction and Division

Subtraction is defined as *adding the opposite*. The **opposite**, or *additive inverse*, of any number *b* is -b. If *b* is positive, then -b is negative. If *b* is negative, then -b is positive.

a - b = a + (-b) Definition of subtraction

Division is defined as *multiplying by the reciprocal*. The **reciprocal**, or *multiplicative inverse*, of any nonzero number *b* is $\frac{1}{b}$.

 $a \div b = a \cdot \frac{1}{b}, b \neq 0$ Definition of division

EXAMPLE 4 Use properties and definitions of operations

Use properties and definitions of operations to show that a + (2 - a) = 2. Justify each step.

Solution

$$a + (2 - a) = a + [2 + (-a)]$$
Definition of subtraction $= a + [(-a) + 2]$ Commutative property of addition $= [a + (-a)] + 2$ Associative property of addition $= 0 + 2$ Inverse property of addition $= 2$ Identity property of addition

GUIDED PRACTICE for Examples 3 and 4

Identify the property that the statement illustrates.

3.
$$(2 \cdot 3) \cdot 9 = 2 \cdot (3 \cdot 9)$$

5. 4(5+25) = 4(5) + 4(25) **6.** $1 \cdot 500 = 500$

Use properties and definitions of operations to show that the statement is true. *Justify* each step.

4. 15 + 0 = 15

7. $b \cdot (4 \div b) = 4$ when $b \ne 0$ 8. 3x + (6 + 4x) = 7x + 6